矿热炉熔炼模型.docx

  1. 1、本文档共4页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
矿热炉熔炼模型 摘要从铁合金矿热炉内的等效电路及其热分布出发,提出冶炼过程中炉内反应区和炉料区之间存在着一个最佳的配热关系,由此而建立起铁合金矿热炉简单的熔炼模型。这个熔炼模型是由底面为金属液面 (或导电炉底)的半球形反应区和长为电极间距、炉料有效截面积为 S′的炉料区构成的。文章简要地论述了此熔炼模型的合理性,并由此导出了极心圆直径、二次电流、炉膛有效深度、电极直径、操作电阻等模型参数的数学表达式。通过对该模型参数表达式的简化,从而得出威斯特里经验计算法中电炉参数系数和炉料物理化学性能的关系式;通过对模型参数表达式的进一步推导,即可比较具体、准确地反应出工艺相似法中相似数的物理意义。文中还介绍了该熔炼模型在实际生产中的指导功能。 反应模型矿热炉参数 前言 随着铁合金冶炼技术的不断提高,铁合金电炉向着大型化、封闭化和计算机控制的方向发展。如何更准确地计算出适合生产实际的电炉参数尤为重要。以在安德烈的周边电阻――K 因子法、威斯特里的威氏计算法、米库林斯基和斯特隆斯基的三大计算方法为主的多种算法中,威氏计算法应用较为广泛,计算结果比较接近实际。然而在计算过程中如何确定参数系数,则是影响计算结果准确性的关键〔1〕。本文从矿热炉内等效电路及热分布(即功率分布)的分析出发,提出对于同一产品的同一冶炼工艺,在原料条件(即物化性能及粒度组成)相同时反应区及炉料区的功率密度存在一个最佳值,从而推导出电炉主要参数的数学表达式,明确了工艺相似法中相似数及威氏计算法中操作电阻系数、电流系数等的物理意义和数学式。为今后在生产及矿热炉设计过程中探究电炉参数和炉料性质之间的关系提供依据。 矿热熔炼炉内的配热分析 矿热炉内电极和炉底及电极之间的等效电路图如图 1 所示〔2〕。 从宏观上分析,对于三相三电极的矿热炉,炉内电路可归纳为星形和三角形两个回路。星形回路是每根电极下端、电极和炉墙间、炉料和炉底(金属熔池)间构成的“星形电阻”Rr。对于三角形回路,每两电极间炉料形成一个可变电阻,称为“三角电阻”Rc。这两个回路是相互并联的,所以操作电阻摘要: 图 1 矿热炉熔池等效电路图 这样矿热炉内就可以简单地分为两个区,电阻为 Rc 的炉料区和电阻为 Rr 的反应区。这里炉料电阻产生热量使原料熔化,熔滴落入反应区,完成还原反应。 既然电炉熔炼电路由两个相互并联的电阻组成,这就存在着在两者之间的能量分配新问题。由此提出炉料配热系数的概念摘要: Q 料=C1×Q 总(或 P 料=C1×PR)(1) 式中, C1――炉料配热系数,和入炉原料的物化性能及还原剂的反应活性有关; Q 料――未熔化炉料区所分得的热量; Q 总――进入电炉的总热量; P 料――未熔化炉料区所消耗功率; PR――进入电炉的总有效功率。 由电工原理可推导出摘要: R=C1R 料(2) 式中, R――操作电阻; R 料――未熔化炉料区域的炉料电阻。 对应每一个产品的冶炼工艺的每一种炉料组成,都存在一个最佳的炉料配热系数,此时炉料的熔化速度和其还原反应速度相匹配。假如输入的电能过多地消耗在熔化炉料上,熔料速度过快,反应区温度低, 渣多而产品少,炉内结瘤,电极上抬,料面堆高,还原反应不彻底,渣中主元素含量高。假如炉料熔化过慢,则产品过热,有用元素挥发损失增大,单位电耗升高,产量少,反应区过小,炉底过热,侵蚀 快。 文献〔3〕介绍,热分布原理的前提是假定反应区和炉料区相分离。 硅铁电炉中反应区和炉料区的分离,是由于电极尖端形成的坩埚而造成的。假如炉料频繁堆入坩埚,则只能造渣而生成不了任何金属。 对于有渣法工艺,焦炭层将熔渣和未熔的炉料分开。用合适粒度的焦炭调整焦炭层的厚度是十分重要 的。焦炭粒度过小,焦炭层簿,反应区和炉料区不好分离,操作困难。焦炭粒度过大,会使操作电阻降低,炉气温度高,电耗高。 矿热熔炼炉熔炼模型 31 反应区和炉料区几何外形的确定 反应区和炉料区几何外形的确定原则,是以某一等温线作为划分界线。 矿热炉内的温度分布 1115MVA 敞口电炉冶炼硅铬合金时的料柱温度分布(见图 2)〔4〕 图 2 中等温线的外形很像电极之间电场的电力线,其分布和该电场的电路吻合。电场中心部分等温线比较紧密,说明炉料性能不一致。在对流传热极小导热性能低的无渣熔池中,熔池各层的温度,非凡是接近熔池表面的温度,主要取决于该部位放出的能量密度。在此可以设定反应区以坩埚边缘温度 (1900℃)作为界线温度。 224MVA 炉料级铬铁封闭电炉内的温度分布〔5〕 据有关文献〔6〕介绍,用碳作还原剂时,生成 Cr3C2 的温度为 1096℃,生成 Cr7C3 的温度为 1130℃, 而生成纯铬的开始温度为 1775℃。由图 3 的温度分布情况,可设定 1250℃的等温线作为界线温度。 从两台电炉内的炉料热分布可见,假如把某

文档评论(0)

151****1198 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档