- 1、本文档共11页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
PAGE
PAGE 2
《三角形内角和》2一师一优教学设计
本节课的设计分为四个环节:情境引入——探索新知——反馈练习——课堂反思与小结
第一环节:情境引入
活动内容:
在证明三角形内角和定理时,用到了把△ABC的一边BC延长得到∠ACD,这个角叫做什么角呢?下面我们就给这种角命名,并且来研究它的性质.
活动目的:
引出三角形外角的概念,并对其进行研究,激发学生学习兴趣。
注意事项:
教师应在学生充分展示自己的意见之后,有意识地引导学生从三角形的外角的角度进行思考。
第二环节:探索新知
活动内容:
① 三角形的外角定义:三角形的一边与另一边的延长线所组成的角,叫做三角形的外角, 结合图形指明外角的特征有三:
(1)顶点在三角形的一个顶点上.
(2)一条边是三角形的一边.
(3)另一条边是三角形某条边的延长线.
② 两个推论及其应用
由学生探讨三角形外角的性质:
问题1:如图,△ABC中,∠A=70°,∠B=60°,∠ACD是△ABC的一个外角,能由∠A、∠B求出∠ACD吗?如果能,∠ACD与∠A、∠B有什么关系?
问题2:任意一个△ABC的一个外角∠ACD与∠A、∠B的大小会有什么关系呢?
?
由学生归纳得出:
推论1: 三角形的一个外角等于和它不相邻的两个内角的和.
推论 2:三角形的一个外角大于任何一个和它不相邻的内角.
例1、已知:∠BAF,∠CBD,∠ACE是△ABC的三个外角.
求证:∠BAF+∠CBD+∠ACE=360°
分析:把每个外角表示为与之不相邻的两个内角之和即得证.
证明:(略).
例2、已知:D是AB上一点,E是AC上一点,BE、CD相交于F,∠A=62°,∠ACD=35°,∠ABE=20°.求:(1)∠BDC度数;(2)∠BFD度数.
解:(略).
活动目的:
通过三角形内角和定理直接推导三角形外角的两个推论,引导学生从内和外、相等和不等的不同角度对三角形作更全面的思考.
注意事项:
新的定理的推导过程应建立在学生的充分思考和论证的基础之上,教师切勿越俎代庖。
第三环节:课堂练习
活动内容:
已知,如图,在三角形ABC中,AD平分外角∠EAC,∠B=∠C.求证:AD∥BC
分析:要证明AD∥BC,只需证明“同位角相等”,即需证明∠DAE=∠B.
证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)
∠B=∠C(已知)
∴∠B=∠EAC(等式的性质)
∵AD平分∠EAC(已知) 新 课 标 第 一 网
∴∠DAE=∠EAC(角平分线的定义)
∴∠DAE=∠B(等量代换)
∴AD∥BC(同位角相等,两直线平行)
想一想,还有没有其他的证明方法呢?
这个题还可以用“内错角相等,两直线平行”来证.
证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)
∠B=∠C(已知)
∴∠C=∠EAC(等式的性质)
∵AD平分∠EAC(已知)
∴∠DAC=∠EAC(角平分线的定义)
∴∠DAC=∠C(等量代换)
∴AD∥BC(内错角相等,两直线平行)
还可以用“同旁内角互补,两直线平行”来证.
证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)
∠B=∠C(已知)
∴∠C=∠EAC(等式的性质)
∵AD平分∠EAC(已知)
∴∠DAC=∠EAC
∴∠DAC=∠C(等量代换)
∵∠B+∠BAC+∠C=180°
∴∠B+∠BAC+∠DAC=180°
即:∠B+∠DAB=180°http://w
∴AD∥BC(同旁内角互补,两直线平行)
② 已知:如图,在三角形ABC中,∠1是它的一个外角,E为边AC上一点,延长BC到D,连接DE.求证:∠1∠2.
证明:∵∠1是△ABC的一个外角(已知)
∴∠1∠ACB(三角形的一个外角大于任何一个和它不相邻的内角)
∵∠ACB是△CDE的一个外角(已知)
∴∠ACB∠2(三角形的一个外角大于任何一个和它不相邻的内角)
∴∠1∠2(不等式的性质)
③.如图,求证:(1)∠BDC∠A.
(2)∠BDC=∠B+∠C+∠A.
如果点D在线段BC的另一侧,结论会怎样?
[分析]通过学生的探索活动,使学生进一步了解辅助线的作法及重要性,理解掌握三角形的内角和定理及推论.
证法一:(1)连接AD,并延长AD,如图,则∠1是△ABD的一个外角,∠2是△ACD的一个外角.
∴∠1∠3.
∠2∠4(三角形的一个外角大于任何一个和它不相邻的内角)
∴∠1+∠2∠3+∠4(不等式的性质)
即:∠BDC∠BAC.
(2)连结AD,并延长AD,如图. X k B 1 . c o m
则∠1是△ABD的一个外角,∠2是△ACD的一个外角.
∴∠1=∠3+∠B
∠2=
您可能关注的文档
- 初中语文_说和做教学设计学情分析教材分析课后反思.doc
- 初中语文_22 《礼记》两则 虽有嘉肴 大道之行也教学设计学情分析教材分析课后反思.doc
- 初中语文_22 《礼记》两则 虽有嘉肴 大道之行也教学课件设计.ppt
- 初中语文_23*马说教学设计学情分析教材分析课后反思.doc
- 初中语文_23*马说教学课件设计.ppt
- 初中语文_24 唐诗二首 茅屋为秋风所破歌杜甫 卖炭翁白居易教学设计学情分析教材分析课后反思.doc
- 初中语文_24 唐诗二首 茅屋为秋风所破歌杜甫 卖炭翁白居易教学课件设计.ppt
- 初中语文_26 小石潭记教学设计学情分析教材分析课后反思.doc
- 初中语文_26 小石潭记教学课件设计.ppt
- 初中语文_27 岳阳楼记教学设计学情分析教材分析课后反思.doc
- 2024高考物理一轮复习规范演练7共点力的平衡含解析新人教版.doc
- 高中语文第5课苏轼词两首学案3新人教版必修4.doc
- 2024_2025学年高中英语课时分层作业9Unit3LifeinthefutureSectionⅢⅣ含解析新人教版必修5.doc
- 2024_2025学年新教材高中英语模块素养检测含解析译林版必修第一册.doc
- 2024_2025学年新教材高中英语单元综合检测5含解析外研版选择性必修第一册.doc
- 2024高考政治一轮复习第1单元生活与消费第三课多彩的消费练习含解析新人教版必修1.doc
- 2024_2025学年新教材高中英语WELCOMEUNITSectionⅡReadingandThi.doc
- 2024_2025学年高中历史专题九当今世界政治格局的多极化趋势测评含解析人民版必修1.docx
- 2024高考生物一轮复习第9单元生物与环境第29讲生态系统的结构和功能教案.docx
- 2024_2025学年新教材高中英语UNIT5LANGUAGESAROUNDTHEWORLDSect.doc
文档评论(0)