智能控制chap6[实用].pptVIP

  1. 1、本文档共40页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
图 自组织神经网络 * 精品PPT·借鉴参考 6.4 神经网络学习算法 神经网络学习算法是神经网络智能特性的重要标志,神经网络通过学习算法,实现了自适应、自组织和自学习的能力。 目前神经网络的学习算法有多种,按有无导师分类,可分为有教师学习(Supervised Learning)、无教师学习(Unsupervised Learning)和再励学习(Reinforcement Learning)等几大类。 * 精品PPT·借鉴参考 在有教师的学习方式中,网络的输出和期望的输出(即教师信号)进行比较,然后根据两者之间的差异调整网络的权值,最终使差异变小。 在无教师的学习方式中,输入模式进入网络后,网络按照一预先设定的规则(如竞争规则)自动调整权值,使网络最终具有模式分类等功能。 再励学习是介于上述两者之间的一种学习方式。 * 精品PPT·借鉴参考 图 有导师指导的神经网络学习 * 精品PPT·借鉴参考 精品PPT·借鉴参考 精品PPT·借鉴参考 精品PPT·借鉴参考 精品PPT·借鉴参考 精品PPT·借鉴参考 精品PPT·借鉴参考 精品PPT·借鉴参考 精品PPT·借鉴参考 精品PPT·借鉴参考 精品PPT·借鉴参考 精品PPT·借鉴参考 精品PPT·借鉴参考 精品PPT·借鉴参考 精品PPT·借鉴参考 精品PPT·借鉴参考 精品PPT·借鉴参考 精品PPT·收集整理 第六章 神经网络理论基础 模糊控制从人的经验出发,解决了智能控制中人类语言的描述和推理问题,尤其是一些不确定性语言的描述和推理问题,从而在机器模拟人脑的感知、推理等智能行为方面迈出了重大的一步。 * 精品PPT·借鉴参考 模糊控制在处理数值数据、自学习能力等方面还远没有达到人脑的境界。人工神经网络从另一个角度出发,即从人恼的生理学和心理学着手,通过人工模拟人脑的工作机理来实现机器的部分智能行为。 * 精品PPT·借鉴参考 人工神经网络(简称神经网络,Neural Network)是模拟人脑思维方式的数学模型。 神经网络是在现代生物学研究人脑组织成果的基础上提出的,用来模拟人类大脑神经网络的结构和行为。神经网络反映了人脑功能的基本特征,如并行信息处理、学习、联想、模式分类、记忆等。 * 精品PPT·借鉴参考 20世纪80年代以来,人工神经网络(ANN,Artificial Neural Network)研究所取得的突破性进展。神经网络控制是将神经网络与控制理论相结合而发展起来的智能控制方法。它已成为智能控制的一个新的分支,为解决复杂的非线性、不确定、未知系统的控制问题开辟了新途径。 * 精品PPT·借鉴参考 神经网络的发展历程经过4个阶段。 1 启蒙期(1890-1969年) 1890年,W.James发表专著《心理学》,讨论了脑的结构和功能。 1943年,心理学家W.S.McCulloch和数学家W.Pitts提出了描述脑神经细胞动作的数学模型,即M-P模型(第一个神经网络模型)。 6.1 神经网络发展历史 * 精品PPT·借鉴参考 1949年,心理学家Hebb实现了对脑细胞之间相互影响的数学描述,从心理学的角度提出了至今仍对神经网络理论有着重要影响的Hebb学习法则。 1958年,E.Rosenblatt提出了描述信息在人脑中贮存和记忆的数学模型,即著名的感知机模型(Perceptron)。 * 精品PPT·借鉴参考 1962年,Widrow和Hoff提出了自适应线性神经网络,即Adaline网络,并提出了网络学习新知识的方法,即Widrow和Hoff学习规则(即δ学习规则),并用电路进行了硬件设计。 2 低潮期(1969-1982) 受当时神经网络理论研究水平的限制及冯·诺依曼式计算机发展的冲击等因素的影响,神经网络的研究陷入低谷。 * 精品PPT·借鉴参考 在美、日等国有少数学者继续着神经网络模型和学习算法的研究,提出了许多有意义的理论和方法。例如,1969年,S.Groisberg和A.Carpentet提出了至今为止最复杂的ART网络,该网络可以对任意复杂的二维模式进行自组织、自稳定和大规模并行处理。1972年,Kohonen提出了自组织映射的SOM模型。 3 复兴期(1982-1986) * 精品PPT·借鉴参考 1982年,物理学家Hoppield提出了Hoppield神经网络模型,该模型通过引入能量函数,实现了问题优化求解,1984年他用此模型成功地解决了旅行商路径优化

文档评论(0)

肖四妹学教育 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档