《极坐标与参数方程》-公开课件(精选).ppt

《极坐标与参数方程》-公开课件(精选).ppt

  1. 1、本文档共28页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
*   本课的重点:(1)参数方程与普通方程的互化;一般要求是把参数方程化为普通方程;较高要求是利用设参求曲线的轨迹方程或研究某些最值问题;(2)极坐标与直角坐标的互化。   重点方法:1消参的种种方法;2极坐标方程化为直角坐标方程的方法;3设参的方法。   坐标系与参数方程在高考中根据我省的情况是选考内容,是7分的解答题之一,与不等式选讲和矩阵与变换等三个选修模块进行三选二解答,知识相对比较独立,与其他章节联系不大,容易拿分。根据不同的几何问题可以建立不同的坐标系,坐标系选取的恰当与否关系着解决平面内的点的坐标和线的方程的难易以及它们位置关系的数据确立。有些问题用极坐标系解答比较简单,而有些问题如果我们引入一个参数就可以使问题容易入手解答,计算简便。高考出现的题目往往是求曲线的极坐标方程、参数方程以及极坐标方程、参数方程与普通方程间的相互转化,并用极坐标方程、参数方程研究有关的距离问题,交点问题和位置关系的判定。 我们把这一形式称为直线参数方程的标准形式,其中t表示直线l上以定点M0为起点,任意一点M(x,y)为终点的有向线段的数量M0M。当点M在点M0的上方时,t0;当点M在点M0的下方时,t0;当点M与点M0重合时,t=0。很明显,我们也可以参数t理解为以M0为原点,直线l向上的方向为正方向的数轴上点M的坐标,其长度单位与原直角坐标系的长度单位相同。 用坐标的观点理解上述直线参数方程中的参数t,在解决有关直线问题时,可以自然地将新旧知识联系起来。 1、 说明: 2.圆x2+y2=r2(r0)的参数方程: 3.圆(x-a)2+(y-b)2=r2的参数方程: 其中参数的几何意义为: 4.椭圆 的参数方程为: θ为圆心角 考点一:参数方程,极坐标方程和直角坐标方程 的互化 考点二:了解参数方程和参数的意义. 考点三:能选择适当的参数写出直线、圆和 椭圆的参数方程及极坐标方程 考点四:能给出简单图形(如过极点的直线、 过极点或圆心在极点的圆)表示的极坐标方程 1.直接求解 分析:把极坐标方程化为普通方程求出直线,再得到极坐标方程。 2.由极坐标求最值 例3.(2009大丰市)已知A是曲线ρ=3cosθ上任意一点,求点A到直线ρcosθ=1距离的最大值和最小值。 分析:可以把极坐标方程转化为普通方程,再结合图形解答问题。 评注:将极坐标方程转化为普通方程是解决两曲线位置关系的重要方法。 分析:已知圆为极坐标方程,可以转化为普通方程,然后改写为参数式即可表示出圆上任意一点的坐标,并把直线的极坐标方程转化为普通方程,圆上的点的坐标可以表示出来,由点到直线的距离公式即可求出。也可以转化为圆心到直线的距离利用数形结合的思想解答。 3.极坐标方程研究两曲线的位置关系 分析:把参数方程转化为普通方程来判断位置关系,利用圆心距与半径求出弦长。 4.两曲线的位置关系 7 *

文档评论(0)

老刘忙 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档