微积分D93方向导数和梯度.ppt

  1. 1、本文档共18页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
定理: 备用题 1. 2. 函数 * * 第九章 第三节 一、方向导数 二、梯度 方向导数与梯度 定义: 存在,则 一、方向导数 说明: 则函数在该点沿任意方向 l 的方向导数存在 , 证明: 由函数 且有 在点 P 可微 , 得 故 对于二元函数 为?, ? ) 的方向导数为 特别: ? 当 l 与 x 轴同向 ? 当 l 与 x 轴反向 向角 函数可微,方向导数存在,但方向导数存在推不出可微,也推不出偏导数存在 例1. 求函数 在点 P(1, 1, 1) 沿向量 的方向导数 . 解: 向量 l 的方向余弦为 例2 例3、研究函数 解: 二、梯度 方向导数公式 令向量 这说明 方向:f 变化率最大的方向 模 : f 的最大变化率之值 方向导数取最大值: 定义 即 同样可定义二元函数 称为函数 f (P) 在点 P 处的梯度 记作 (gradient), 在点 处的梯度 说明: 函数的方向导数为梯度在该方向上的投影. 向量 例4. 证: 试证 处矢径 r 的模 , 例5. 已知位于坐标原点的点电荷 q 在任意点 试证 证: 利用例6的结果 这说明场强: 处所产生的电位为 垂直于等位面, 且指向电位减少的方向. 内容小结 1. 方向导数 ? 三元函数 在点 沿方向 l (方向角 的方向导数为 ? 二元函数 在点 的方向导数为 沿方向 l (方向角为 2. 梯度 ? 三元函数 在点 处的梯度为 ? 二元函数 在点 处的梯度为 3. 关系 方向导数存在 偏导数存在 ? ? 可微 梯度在方向 l 上的投影. 思考与练习 1. 设函数 (1) 求函数在点 M ( 1, 1, 1 ) 处沿曲线 在该点切线方向的方向导数; (2) 求函数在 M( 1, 1, 1 ) 处的梯度与(1)中切线方向 的夹角 ? . 曲线 1. (1) 在点 函数沿 l 的方向导数 M (1,1,1) 处切线的方向向量 函数 在点 处的梯度 解: 则 注意 x , y , z 具有轮换对称性 (92考研)

文档评论(0)

134****9146 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档