熔融盐储能技术.doc

  1. 1、本文档共2页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
熔融盐储能技术 盐储能技术是目前国际上最为主流的高温蓄热技术之一,具有成本低、热容高、安全性好等优点,已在西班牙等国的太阳能光热发电中得到了实际应用。   一、技术特性   熔融盐储能技术是利用硝酸钠等原料作为传热介质,一般与太阳能光热发电系统结合,使光热发电系统具备储能和夜间发电能力,可满足电网调峰需要。按照热能储存方式不同,太阳能高温储能技术可分为显热储能、潜热储能和混合储能。   显热储能主要是通过某种材料温度的上升或下降而储存热能,是目前技术最成熟、材料来源最丰富、成本最低廉的一种蓄热方式。显热储能包括双罐储能(导热油、熔融盐)、水蒸气储能、固体储能(混凝土、陶瓷)、单罐斜温层储能(导热油、熔融盐)等。   潜热储能主要是通过蓄热材料发生相变时吸收或放出热量来实现能量的储存,具有蓄热密度大,充、放热过程波动温度范围小等优点。潜热储能包括熔盐相变储能、熔盐+无机材料复合相变储能等。 混合储能就是将显热储能、潜热储能等方式结合起来,以取得最好的经济性。混合储能包括相变储能+斜温层储能、相变储能+混凝土储能等。   二、发展现状   西班牙是全球太阳能光热发电产业的领先国家,截至2010年8月,西班牙已建成的太阳能光热发电站装机容量为48.24万千瓦,正在建的为164.3万千瓦,已宣布要建的为108.01万千瓦。其中相当一部分光热发电站均采用熔融盐进行 储能。   具体案例包括:2009年投运的西班牙安达索尔(ANDASO)槽式太阳能光热发电站一期工程利用28500吨熔融盐作为 储能介质,能够维持电站满负荷运行7.5个小时。目前正在建设的西班牙GEMOSOLAR塔式商业化运行电站也采用熔融盐传热蓄热介质,其他几个计划建设的塔式太阳能光热发电站也准备采用同样的技术手段。   三、应用前景   根据国外的研究表明,高温熔融盐的成本是决定熔融盐能否作为太阳能 储能材料的先决条件,若材料成本比较高,用在太阳能光热发电中就不现实。同时,温度对系统操作成本也有很大影响,操作温度高,高温熔融盐蓄热率高,系统发电效率也高,长期来说,就可以降低操作成本。   而光热电站通过配置技术上相对成熟的大容量 储能装置,可以实现发电功率平稳、可控输出。随着技术快速进步和规模不断扩大,这些电站基础设施的造价正在快速下降。国际经验表明光热发电成本与规模的相关性远比光伏强,大规模发展能够显著降低生产成本(国际上光热发电成本低于光伏发电成本)。   四、对我国的启示   2009年我国全社会用电量36430亿千瓦时,需要调峰的比例是30%-40%。发展带有 储能的调峰太阳能光热发电站,将聚集的高温太阳能蓄积起来,在需要调峰时利用蓄积的太阳能发电,实现电站的调峰,成为新型 储能技术的一种利用方式。熔融盐 储能技术能够实现连续供能、保护用能设备工作的稳定性,从而提高系统效率、延长系统寿命。该项技术在太阳能光热发电项目中已得到很好的应用,对于提高系统发电效率、稳定性和可靠性具有重要意义。因此,熔融盐 储能与太阳能光热发电相结合将是未来发展趋势,熔融盐 储能太阳能热发电调峰电站应是解决 智能电网大规模 储能的一条技术途径。此外,应探索熔融盐 储能技术的更多应用途径,为 智能电网大规模 储能提供多样化的解决方案。

文档评论(0)

annylsq + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档