- 1、本文档共52页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
全国机器人考级一级知识点串讲;目录;第一章:一级标准;第二章:机器人;第一定律:机器人不得伤害人类个体,或者目睹人类个体将遭受危险而袖手不管
第二定律:机器人必须服从人给予它的命令,当该命令与第一定律冲突时例外
第三定律:机器人在不违反第一、第二定律的情况下要尽可能保护自己的生存。
;主流机器人影视及形象;下列图片中,哪个不是机器人
A. B. C. D.
答案:D
下列人物形象中,哪一个是机器人?
A. B.
C. D.
答案:D
;第三章:基本结构;斜面:指与水平方向不为零的夹角的平面。斜面是一种简单机械,可用于克服垂直提升重物的困难,省力但是费距离。;斜面的工作原理:斜面与平面的倾角越小,斜面较长,则省力越大,但费距离。斜面与平面的倾角越大,斜面较短,则省力越小,但省距离。;楔形:楔是斜面的应用,原指上厚下薄的小木橛,在结构中表示一头尖一头稍粗的物品。
生活中常见的应用为斧子,钉子等。;螺旋:螺旋是一种简单机械,是斜面的变形。
生活中常见的应用为螺丝钉、螺旋桨、压榨机等。; 第一个描述螺旋物的人是希腊科学家阿基米德。阿基米德螺旋是一个装在木制圆筒里的巨大螺旋状物,如图所示,它用来把水从一个水平面提升到另一个水平面,对田地进行灌溉。这个东西的真正发明者并非阿基米德本人,他只是描述了这种已经存在的东西。阿基米德螺旋可能是古代埃及的能工巧匠们设计并在尼罗河两岸的灌溉中使用的。
;稳定性分析:每个物体都是由简单的图形构成的,也就是说物体的每个面都是由圆,三角形,四边形和多边形构成的。;三角形有着稳固、坚定、耐压的特点。
应用:三角形框架、起重机、三角形吊臂、屋顶、钢架桥中都有三角形的身影。;一个结构是否稳定,除了考虑结构外,还要考虑放置的位置和物体的重心。总体来说符合以下原则:
;;第四章:能量转化;能量守恒:能量不会凭空消失,也不会凭空产生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总和保持不变。;第五章:杠杆;杠杆原理的公式是 F1 L1 = F2 L2
杠杆原理的五要素是
动力:使杠杆转动的力叫做动力,施力的点叫动力作用点。
动力臂:从支点到动力作用线的垂直距离叫做动力臂
支点:杠杆绕着转动的固定点叫做支点
阻力:阻碍杠杆转动的力叫做阻力,施力的点叫阻力作用点。
阻力臂:从支点到阻力作用线的垂直距离叫做阻力臂
说明:通过力的作用点沿力的方向的直线叫做力的作用线。省距离、费距离中的距离指的是力的作用点运动的距离,而不是力到支点的距离。 ; 生活中的杠杆按照施加动力的大小分为省力杠杆、费力杠杆和等臂杠杆。三者具体的比较如下表所示;省力杠杆:胡桃钳,门把手,扳手,铁钳,指甲刀。省力杠杆的应用为了省力。
;费力杠杆:镊子、钓鱼竿、筷子等,费力杠杆的应用主要是为了省距离;等臂杠杆:天平,主要用于测量两侧物体质量。;剪刀是利用( )原理工作的。
A.滑轮 B.轮轴 C.斜面 D.杠杆
答案:D
下面不是利用杠杆原理的工具是哪个
;第六章:齿轮;齿轮啮合方式常用两种:平行啮合,垂直啮合。;齿轮传动的方向(垂直啮合不在同一平面,不考虑方向)
(1)两齿轮平行啮合:两个齿轮转动的方向相反;当大齿轮作为主动轮,顺时针转动时,小齿轮作逆时针转动。
(2)若多个齿轮啮合:接近的两个齿轮转动方向相反;而中间隔了一个齿轮的1号和3号转动方向相同,如图所示。;轮轴的实质实际是一个能够连续旋转的杠杆。这个杠杆的支点就在轴线上,轮轴在转动时轮与轴有相同的转速,动力点就是轮的外圆,而阻力点就是轴的外圆(阻力臂就是轴的半径),所以当动力作用在轮上,则轮轴为省力杠杆,轮和轴的半径相差越大则越省力,但越费距离。动力作用在轴上则轮轴为费力杠杆,轮和轴的半径相差越大则费力,但越省距离。;在日常生活中,常用的轮轴有:
A.水龙头 B.水杯 C.门把手 D.方向盘
答案:A|C|D
;齿轮的种类,按外形分类,分为:平齿轮、冠齿轮、蜗轮;角速度:圆周运动中在单位时间内转过的弧度,即齿轮每秒转动的角度。
线速度:圆周运动中在单位时间内转过的曲线长度。
转速:圆周运动中在单位时间内转过的圈数。
在齿轮啮合方式传动下
(1)转动的齿数相同,故而线速度相同,角速度和转速根据齿轮大小而判断。齿轮越大,角速度和转速越小。;齿轮传动的速度比(转速),在这里假设小齿轮与大齿轮的半径比为
文档评论(0)