第11讲 典型环节的伯特图极坐标图课件.ppt

第11讲 典型环节的伯特图极坐标图课件.ppt

  1. 1、本文档共54页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
* 5.2.4 二阶因子 在低频时,即当 低频渐近线为一条0分贝的水平线 -20log1=0dB 在高频时,即当 高频时的对数幅频特性曲线是一条斜率为-40分贝/十倍频程的直线 由于在 时 所以高频渐近线与低频渐近线在 处相交。这个频率就是上述二阶因子的转角频率。 * 幅频特性与 关系 * 幅频特性与 关系 * 幅频特性与 关系 * 幅频特性与 关系 * 幅频特性与 关系 * 图5-13 二阶因子的对数幅频特性曲线 幅频特性与 关系 * 相频特性与 关系 * 相频特性与 关系 * 相频特性与 关系 * 相频特性与 关系 * 相频特性与 关系 * 图5-13 二阶因子的对数相频特性曲线 相频特性与 关系 * 幅值误差与 关系 * 幅值误差与 关系 * 幅值误差与 关系 * 幅值误差与 关系 * 幅值误差与 关系 * 图5-14 二阶因子的频率响应曲线以渐近线表示时 引起的对数幅值误差 幅值误差与 关系 * 令 (5-22) (5-23) (5-25) 谐振频率 谐振频率谐振峰值 谐振峰值 当 时,幅值曲线不可能有峰值出现,即不会有谐振 与 关系曲线 请看 * 图5-15 与 关系曲线 /dB * 开环系统的伯德图 步骤如下 写出开环频率特性表达式,将所含各因子的转折频率由大到小依次标在频率轴上 绘制开环对数幅频曲线的渐近线。 低频段的斜率为 渐近线由若干条分段直线所组成 在 处, 每遇到一个转折频率,就改变一次分段直线的斜率 因子的转折频率 ,当 时, 分段直线斜率的变化量为 因子的转折频率 ,当 分段直线斜率的变化量为 时, * 高频渐近线,其斜率为 n为极点数,m为零点数 作出以分段直线表示的渐近线后,如果需要,再按典型因子的误差曲线对相应的分段直线进行修正 作相频特性曲线。根据表达式,在低频中频和高频区域中各选择若干个频率进行计算,然后连成曲线 * 已知一反馈控制系统的开环传递函数为 试绘制开环系统的伯德图(幅频特性用分段直线表示) 例5-1 解:开环频率特性为 * -20dB/dec -40dB/dec -20dB/dec * * 作业 5-1,5-2,5-4,5-11(1)、(3) * 谢谢! 结束 请看下页 * 第11讲 * 第5章 线性系统的频域分析法 Frequency-response analysis 频域分析法 频率特性及其表示法 典型环节的频率特性 稳定裕度和判据 频率特性指标 应用频率特性研究线性系统的经典方法称为频域分析法。 * (1)频率特性具有明确的物理意义,它可以用实验的方法来确定,这对于难以列写微分方程式的元部件或系统来说,具有重要的实际意义。 (2)由于频率响应法主要通过开环频率特性的图形对系统进行分析,因而具有形象直观和计算量少的特点。 (3)频率响应法不仅适用于线性定常系统,而且还适用于传递函数不是有理数的纯滞后系统和部分非线性系统的分析。 特点 * 5.1频率特性及其表示法 5.1.1 频率特性的基本概念 频率特性又称频率响应,它是系统(或元件)对不同频率正弦输入信号的响应特性。 输出的振幅和相位一般均不同于输入量,且随着输入信号频率的变化而变化 * Sinresponse2order.m Sinresponse2orderb.m * 设系统的传递函数为 已知输入 其拉氏变换 A为常量,则系统输出为 (5-1) G(s) 的极点 (5-2) 对稳定系统 * (5-2) 趋向于零 待定系数 由于 是一个复数向量,因而可表示为 (5-7) (5-5) (5-6) (5-4) * (5-11) 线性系统的稳态输出是和输入具有相同频率的正弦信号,其输出与输入的幅值比为 输出与输入的相位差 相频特性 幅频特性 说明 * 下面以R-C电路为例,说明频率特性的物理意义。图5-3所示电路的传递函数为 设输入电压 由复阻抗的概念求得 (5-15) 式中 * 称为电路的频率特性。 是 的幅值 是 的相角 和 都是输入信号频率 故它们分别被称为电路的幅频特性和相频特性。 所示频率特性的物理意义是:当一频率为 的正弦信号加到电路的输入端后,在稳态时,电路的输出与输入之比;或者说输出与输入的幅值之比和相位之差。 它由该电路的结构和参数决定,与输入信号的幅值与相位无关。 它表示在稳态时,电路的输出与输入的幅值之比。 它表示在稳态时,输出信号与输入信号的相位差。 由于 的函数 * 电路的输出与输入的幅值之比 (a) 幅频特性 * (b)相频特性 输出与输入的相位之差 * 频率特性与传递函数具有十分相的形式 比较 * 5.1.2 频率

文档评论(0)

a13355589 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档