- 1、本文档共8页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
.
.
动态问题
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.
关键:动中求静.
数学思想:分类思想 数形结合思想 转化思想
1、如图1,梯形ABCD中,AD∥ BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t= 时,四边形是平行四边形;6
当t= 时,四边形是等腰梯形. 8
2、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为 5
3、如图,在中,,.点是的中点,过点的直线从与重合的位置开始,绕点作逆时针旋转,交边于点.过点作交直线于点,设直线的旋转角为.
(1)①当 度时,四边形是等腰梯形,此时的长为 ;
OECBDAlOCBA(备用图)
O
E
C
B
D
A
l
O
C
B
A
(备用图)
(2)当时,判断四边形是否为菱形,并说明理由.
解:(1)①30,1;②60,1.5;
(2)当∠α=900时,四边形EDBC是菱形.
∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形
在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.
∴AB=4,AC=2. ∴AO== .在Rt△AOD中,∠A=300,∴AD=2.
∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形,
∴四边形EDBC是菱形
ACBEDNM图3ABCDEMN图24、在△ABC中,∠ACB=90°
A
C
B
E
D
N
M
图3
A
B
C
D
E
M
N
图2
C
C
B
A
E
D
图1
N
M
(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;
(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;
(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.
解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90°
∴∠CAD=∠BCE ∵AC=BC ∴△ADC≌△CEB
② ∵△ADC≌△CEB ∴CE=AD,CD=BE ∴DE=CE+CD=AD+BE
(2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC
∴△ACD≌△CBE ∴CE=AD,CD=BE ∴DE=CE-CD=AD-BE
(3) 当MN旋转到图3的位置时,DE=BE-AD(或AD=BE-DE,BE=AD+DE等)
∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE, 又∵AC=BC,
∴△ACD≌△CBE, ∴AD=CE,CD=BE, ∴DE=CD-CE=BE-AD.
5、数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.,且EF交正方形外角的平行线CF于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证,所以.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
AD
A
D
F
C
G
E
B
图1
ADFCGEBM证明:在上取一点
A
D
F
C
G
E
B
M
.,.
是外角平分线,,.
.
ADFCG
A
D
F
C
G
E
B
图2
. (ASA). .
(2)正确.
证明:在的延长线上取一点.使,连接.
ADFCGE
A
D
F
C
G
E
B
图3
A
D
F
C
G
E
B
N
四边形是正方形, .
. .
(ASA).
.
6、如图, 射线MB上,MB=9,A是射线MB外一点,AB=5且A到射线MB的距离为3,动点P从M沿射线MB方向以1个单位/秒的速度移动,设P的运动时间为t.
求(1)△ PAB为等腰
文档评论(0)