复数的有关概念_课件.ppt

  1. 1、本文档共16页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
实数集的一些性质和特点: (1) 实数可以判定相等或不相等; (2) 不相等的实数可以比较大小; (3) 实数可以用数轴上的点表示; (4) 实数可以进行四则运算; (5) 负实数不能进行开偶次方根运算; …… 复数的有关概念 问题一 问题二 问题三 问题四 课堂小结 问题一: 你认为满足什么条件时,可以说这两个复数相等? 对于复数a+bi和c+di(a,b,c,d ∈ R), a=c,并且b=d,即实部与虚部分别相等时,叫这两个复数相等。 记作a+bi=c+di。 复数相等的内涵: 复数a+bi可用有序实数对(a,b)表示。 例1 设x,y∈R,并且 (2x–1)+xi=y–(3–y)i,求x,y。 解题思考: 复数相等的问题 转化 求方程组的解的问题 一种重要的数学思想:转化思想 问题二: 任意两个复数可以比较大小吗?认为可以者,请拿出进行比较的方法;认为不可以者,请说明理由。 x o 1 问题三: 你能否找到用来表示复数的几何模型呢? 实数可以用数轴上的点来表示。 一一对应 规定了正方向, 直线 数轴 原点, 单位长度 实数 数轴上的点 (形) (数) (几何模型) 复数z=a+bi 有序实数对(a,b) 直角坐标系中的点Z(a,b) x y o b a Z(a,b) 建立了平面直角坐标系来表示复数的平面 x轴------实轴 y轴------虚轴 (数) (形) ------复数平面 (简称复平面) 一一对应 z=a+bi 概念辨析 例题 问题四: 实数绝对值的几何意义: 能否把绝对值概念推广到复数范围呢? X O A a | a | = | OA | 实数a在数轴上所对应的点A到原点O的距离。 x O z=a+bi y | z | = |OZ| 复数的绝对值 复数 z=a+bi在复平面上对应的点Z(a,b)到原点的距离。 (复数的模) 的几何意义: Z (a,b) 例3 求下列复数的模: (1)z1=-5i (2)z2=-3+4i (3)z3=5-5i (3)满足|z|=5(z∈C)的z值有几个? 思考: (2)满足|z|=5(z∈R)的z值有几个? (4)z4=1+mi(m∈R) (5)z5=4a-3ai(a0) (1)复数的模能否比较大小? 这些复 数对应的点在复平面上构成怎样的图形? 图示 课堂小结: 一. 数学知识: 二. 数学思想: 三. 数的发展和完善过程给我们的启示: (1)复数相等 (2)复平面 (3)复数的模 (3)类比思想 (2)数形结合思想 (1)转化思想 课题:复数的有关概念 作业: 数学练习册: 第16页 3,4,5,6,7 (A)在复平面内,对应于实数的点都在实 轴上; (B)在复平面内,对应于纯虚数的点都在 虚轴上; (C)在复平面内,实轴上的点所对应的复 数都是实数; (D)在复平面内,虚轴上的点所对应的复 数都是纯虚数。 辨析: 1.下列命题中的假命题是( ) D 2.“a=0”是“复数a+bi (a , b∈R)所对应的点在虚轴上”的( )。 (A)必要不充分条件 (B)充分不必要条件 (C)充要条件 (D)不充分不必要条件 C 例2 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围。 变式:证明对一切m,此复数所对应的点不可能位于第四象限。 解题思考: 表示复数的点所在象限的问题 复数的实部与虚部所满足的不等式组的问题 转化 (几何问题) (代数问题) 一种重要的数学思想:数形结合思想 x y O 设z=x+yi(x,y∈R) 满足|z|=5(z∈C)的复数z对应的点在复平面上将构成怎样的图形? 5 5 –5 –5 谢 谢! 放映结束 感谢各位批评指导! 让我们共同进步 * * * * * *

文档评论(0)

文档分享 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档