- 1、本文档共5页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
第PAGE1页(共NUMPAGES1页)
60度的菱形内再做一个60度的角
一.解答题(共7小题)
1.如图,已知菱形ABCD,∠B=60°,△ADC内一点M满足∠AMC=120°,若直线BA与CM交于点P,直线BC与AM交于点Q,求证:P,D,Q三点共线.
【分析】求证:P,D,Q三点共线就是证明平角的问题,可以求证∠PDA+∠ADC+∠CDQ=180°,根据△PAC∽△AMC,△AMC∽△ACQ,可以得出∠PAD=∠DCQ=60°;进而证明△PAD∽△DCQ,得出∠APD=∠CDQ,则结论可证.
【解答】证明:连接PD,DQ,
由已知∠PAC=120°,∠QCA=120°,
∴△PAC∽△AMC,△AMC∽△ACQ.
∴,.
∴AC2=PA?QC,又AC=AD=DC.
∴,又∠PAD=∠DCQ=60°,
∴△PAD∽△DCQ,∴∠APD=∠CDQ.
∴∠PDA+∠ADC+∠CDQ=180°,
∴P,D,Q三点共线.
【点评】本题是证明三点共线的问题,这类题目可以转化为求证平角的问题.并且本题利用相似三角形的性质,对应角相等.
2.如图,已知菱形ABCD的边长为6cm,∠B=60°,E、F是BC、CD上的两个动点,且∠EAF=60°,试判断四边形AECF的面积是否变化?不变请求值.
3.如图,已知菱形ABCD的边长为2,∠B=60°,点P、Q分别是边BC、CD上的动点(不与端点重合),在运动过程中,保持∠PAQ=60°不变.
(1)试说明:△PAQ是等边三角形;
(2)求四边形APCQ的面积;
(3)填空:当BP= 时,S△PCQ最大.
4.如图,在边长为1+的正方形ABCD中,P是BC边上的一点,把线段PA绕着点P顺时针旋转得到线段PQ.
(1)如图(左),若点Q恰好落在边CD上,∠APQ=60°,求∠BAP的度数;
(2)如图(右),若点Q落在正方形的外部.且∠APQ=90°,△CPQ是等腰三角形,求BP的长.
5.如图,已知四边形ABCD是菱形,∠B=60°,点P是直线BC上一点,作∠APQ=60°,PQ交DC所在直线于Q,连接AQ.
(1)当点P在线段BC上时,如图1,则△APQ的形状是 ;
(2)当点P在线段BC的延长线上,如图2,(1)的结论是否成立?若成立,请证明;若不成立,请说明理由;
(3)当点P在线段BC的反向延长线上时,(1)中的结论是否成立?请在备用图上画出图形,直接写出结论.
6.如图,已知菱形ABCD的边长为2,∠B=60°,点P、Q分别是边BC、CD上的动点(不与端点重合),且BP=CQ.
(1)图中除了△ABC与△ADC外,还有哪些三角形全等,请写出来;
(2)点P、Q在运动过程中,四边形APCQ的面积是否变化,如果变化,请说明理由;如果不变,请求出面积;
(3)当点P在什么位置时,△PCQ的面积最大,并请说明理由.
7.如图,菱形ABCD中,AB=6,∠A=60°,点E是线段AB上一点(不与A,B重合),作∠EDF交BC于点F,且∠EDF=60°.
(1)直接写出菱形ABCD的面积;
(2)当点E在边AB上运动时,
①连结EF,求证:△DEF是等边三角形;
②探究四边形DEBF的面积的变化规律,写出这个规律,并说明理由;
③直接写出四边形DEBF周长的最小值.
您可能关注的文档
- “东方明珠”——香港和澳门.ppt
- 《表内除法—平均分》.ppt
- 【经典专题】空间几何的外接球和内切球教师版.doc
- 2008-2013年 中南大学博士 肿瘤学基础试题及答案.docx
- 2015产业转移与区域产业结构调整分析实践(仅适用于2015年度).docx
- 《成长的不仅仅是身体》课件(转).ppt
- 2016小学综合素质真题.docx
- 2017-5-11移动宽带服务规范.pdf
- 2017年山东专转本英语真题.docx
- 2018AHA心肺复苏指南发布.docx
- 第12课 大一统王朝的巩固 课件(20张ppt).pptx
- 第17课 君主立宪制的英国 课件.pptx
- 第6课 戊戌变法 课件(22张ppt).pptx
- 第三章 物态变化 第2节_熔化和凝固_课件 (共46张ppt) 人教版(2024) 八年级上册.pptx
- 第三章 物态变化 第5节_跨学科实践:探索厨房中的物态变化问题_课件 (共28张ppt) 人教版(2024) 八年级上册.pptx
- 2025年山东省中考英语一轮复习外研版九年级上册.教材核心考点精讲精练(61页,含答案).docx
- 2025年山东省中考英语一轮复习(鲁教版)教材核心讲练六年级上册(24页,含答案).docx
- 第12课近代战争与西方文化的扩张 课件(共48张ppt)1.pptx
- 第11课 西汉建立和“文景之治” 课件(共17张ppt)1.pptx
- 唱歌 跳绳课件(共15张ppt内嵌音频)人音版(简谱)(2024)音乐一年级上册第三单元 快乐的一天1.pptx
文档评论(0)