托勒密定理与西姆松定理.doc

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
§4托勒密定理与西姆松定理 托勒密(Ptolemy)定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和). EDCBA E D C B A 一、直接应用托勒密定理 例1、 如图2,P是正△ABC外接圆的劣弧上任一点(不与B、C重合), 求证:PA=PB+PC. 分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为繁冗. 若借助托勒密定理论证,则有PA·BC=PB·AC+PC·AB,∵AB=BC=AC. ∴PA=PB+PC. 二、完善图形 借助托勒密定理 例2 、证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2 证明:如图,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD 是圆内接四边形.由托勒密定理有 AC·BD=AB·CD+AD·BC. ① 又∵ABCD是矩形,∴AB=CD,AD=BC,AC=BD. ② 把②代人①,得AC2=AB2+BC2. 例3 、如图,在△ABC中,∠A的平分线交外接圆于D,连结BD, 求证:AD·BC=BD(AB+AC). 证明:连结CD,依托勒密定理有 AD·BC=AB·CD+AC·BD. ∵∠1=∠2,∴ BD=CD. 故 AD·BC=AB·BD+AC·BD=BD(AB+AC). 三、构造图形 借助托勒密定理 例4 若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1. 证明:如图作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB, 使AC=a,BC=b, BD=x,AD=y. 由勾股定理知a、b、x、y是满足题设条件的. 据托勒密定理有 AC·BD+BC·AD=AB·CD. ∵CD≤AB=1,∴ax+by≤1. 四、巧变原式 妙构图形,借助托勒密定理 例5、已知a、b、c是△ABC的三边,且a2=b(b+c),求证:∠A=2∠B. 分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进而构造一个等腰 梯形,使两腰为b,两对角线为a,一底边为c. 证明:如图,作△ABC的外接圆,以A为圆心,BC为半径作弧交圆于D,连结BD、DC、 DA.∵AD=BC,∴∠ABD=∠BAC. 又∵∠BDA=∠ACB(对同弧),∴∠1=∠2.   依托勒密定理有 BC·AD=AB·CD+BD·AC. ① 而已知a2=b(b+c),即a·a=b·c+b2. ② ∴∠BAC=2∠ABC. 五、巧变形 妙引线 借肋托勒密定理 例6 、在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4, 分析:将结论变形为AC·BC+AB·BC=AB·AC,把三角形和圆联系起来,可联想到托勒密 定理,进而构造圆内接四边形. 如图,作△ABC的外接圆,作弦BD=BC,连结AD、CD. 在圆内接四边形ADBC中,由托勒密定理有 AC·BD+BC·AD=AB·CD 易证AB=AD,CD=AC,∴AC·BC+BC·AB=AB·AC, 练习1.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。 则CD=DA=AB,AC=BD。由托勒密定理,AC·BD=AD·BC+CD·AB。 西姆松(Simson)定理(西姆松线) 注: 例7、 例8、 例9、 例10、 作业: 1.设AD是△ABC的边BC上的中线,直线CF交AD于F。 求证:。 2.过△ABC的重心G的直线分别交AB、AC于E、F, 交CB于D。求证:。 3.D、E、F分别在△ABC的BC、CA、AB边上, , AD、BE、CF交成△LMN。求S△LMN。 4.以△ABC各边为底边向外作相似的等腰△BCE、 △CAF、△ABG。求证:AE、BF、CG相交于一点。 5.已知正七边形A1A2A3 6.△ABC的BC边上的高AD的延长线交外接圆于P,作PE⊥AB 于E,延长ED交AC延长线于F。求证:BC·EF=BF·CE+BE·CF。 7.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的 比为AM:AC=CN:CE=k,且B、M、N共线。求k。(23-IMO-5) 8.O为△ABC

文档评论(0)

lxm + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档