常用巧算和速算方法[1].pdf

  1. 1、本文档共15页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
常用的巧算和速算方法 【顺逆相加】用“顺逆相加”算式可求出若干个连续数的和。例如著名的大 数学家高斯(德国)小时候就做过的“百数求和”题,可以计算为 所以,1+2+3+4+……+99+100 =101×100÷2 =5050。 又如,计算“3+5+7+………+97+99=?”,可以计算为 所以,3+5+7+……+97+99=(99+3)×49÷2= 2499。 这种算法的思路,见于书籍中最早的是我国古代的《张丘建算经》。张丘建 利用这一思路巧妙地解答了“有女不善织”这一名题: “今有女子不善织,日减功,迟。初日织五尺,末日织一尺,今三十日织讫。 问织几何?” 题目的意思是:有位妇女不善于织布,她每天织的布都比上一天减少一些, 并且减少的数量都相等。她第一天织了5尺布,最后一天织了1尺,一共织了 30天。问她一共织了多少布? 张丘建在《算经》上给出的解法是: “并初末日织尺数,半之,余以乘织讫日数,即得。”“答曰:二匹一丈”。 这一解法,用现代的算式表达,就是 1匹=4丈,1丈=10尺, 90尺=9丈=2 匹1丈。(答略) 张丘建这一解法的思路,据推测为: 如果把这妇女从第一天直到第30天所织的布都加起来,算式就是 5+…………+1 在这一算式中,每一个往后加的加数,都会比它前一个紧挨着它的加数,要 递减一个相同的数,而这一递减的数不会是个整数。 若把这个式子反过来,则算式便是 1+………………+5 此时,每一个往后的加数,就都会比它前一个紧挨着它的加数,要递增一个 相同的数。同样,这一递增的相同的数,也不是一个整数。 假若把上面这两个式子相加,并在相加时,利用“对应的数相加和会相等” 这一特点,那么,就会出现下面的式子: 所以,加得的结果是6×30=180(尺) 但这妇女用30天织的布没有180尺,而只有180尺布的一半。所以,这妇 女30天织的布是 180÷2=90(尺) 可见,这种解法的确是简单、巧妙和饶有趣味的。 【分组计算】一些看似很难计算的题目,采用“分组计算”的方法,往往可 以使它很快地解答出来。例如 求1到10亿这10亿个自然数的数字之和。 这道题是求“10亿个自然数的数字之和”,而不是“10亿个自然数之和”。 什么是“数字之和”?例如,求1到12这12 个自然数的数字之和,算式是 1+2+3+4+5+6+7+8+9+1+0+1+1+1+1+2=5l。 显然,10亿个自然数的数字之和,如果一个一个地相加,那是极麻烦,也 极费时间(很多年都难于算出结果)的。怎么办呢?我们不妨在这10亿个自然 数的前面添上一个“0”,改变数字的个数,但不会改变计算的结果。然后,将 它们两两分组: 0和999,999,999;1 和999,999,998; 2和999,999,997;3 和999,999,996; 4和999,999,995;5 和999,999, 994; ……… ……… 依次类推,可知除最后一个数,1,000,000,000以外,其他的自然数与 添上的0共10亿个数,共可以分为 5亿组,各组数字之和都是81,如 0+9+9+9+9+9+9+9+9+9=81 1+9+9+9+9+9+9+9+9+8=81 ……………… 最后的一个数1,000,000,000不成对,它的数字之和是1。所以,此题 的计算结果是 (81×500,000,000)+1 =40,500,000,000+1 =40,500,000,001 【由小推大】 “由小推大”是

文档评论(0)

汪汪队 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档