基于正交半监督局部Fisher判别分析的故障诊断-机械工程学报.PDFVIP

基于正交半监督局部Fisher判别分析的故障诊断-机械工程学报.PDF

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于正交半监督局部Fisher判别分析的故障诊断-机械工程学报

50 18 Vol.50 No.18 2 0 1 4 9 JOURNAL OF MECHANICAL ENGINEERING Sep. 2 0 1 4 DOI 10.3901/JME.2014.18.007 Fisher * 1 1 2 1 (1400030 2 450007) Fisher (Orthogonal semi-supervised local Fisher discriminant analysis, OSELF)OSELF (Coarse to fine k nearest neighbor classifier, CFKNNC)OSELF CFKNNC Fisher k TH165 Fault Diagnosis Method Based on Orthogonal Semi-supervised Local Fisher Discriminant Analysis SU Zuqiang1 TANG Baoping1 LIU Ziran2 QIN Yi1 (1. The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030; 2. School of Mechanical Electrical Engineering, Henan University of Technology, Zhengzhou 450007) Abstract Fault diagnosis method based on orthogonal semi-supervised local Fisher discriminant analysis(OSELF) is proposed, aiming to solve the problem of inadequate number of labeled fault samples and high dimensionality of the feature set. A new dimensionality reduction method named OSELF is proposed combining orthogonal iteration algorithm with semi-supervised local Fisher discriminant analysis(SELF), which can effectively utilize the fault information supported by the labeled and unlabeled fault samples to embed the fault samples into the low-dimensional subspace without the over-fitted problem. The basis vectors of the orthogonal projection matrix are statically uncorrelated, and the discriminations of the obtained low-dimensional fault feature vectors are improved. Then the low-dimensional fault samples are fed int

文档评论(0)

suijiazhuang1 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档