- 1、本文档共5页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
课题:12.1轴对称(二) 课时:3
教学
目标
A类:
1、轴对称的性质.
2、线段垂直平分线的性质.
B类:
探究线段垂直平分线的性质
C类:
经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察
预习
作业
个体学习方案
1、了解两个图形成轴对称性的性质,了解轴对称图形的性质.
2、探究线段垂直平分线的性质.
3、经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察.。
教学板块
学生课堂练习单
有效生成
第二教时
Ⅰ.创设情境,引入新课
上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界非常美丽.那么大家想一想,什么样的图形是轴对称图形呢?
今天继续来研究轴对称的性质.
Ⅱ.导入新课
观看投影并思考.
如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,线段AA′、BB′、CC′与直线MN有什么关系?
图中A、A′是对称点,AA′与MN垂直,BB′和CC′也与MN垂直.
AA′、BB′和CC′与MN除了垂直以外还有什么关系吗?
△ABC与△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,设AA′交对称轴MN于点P,将△ABC和△A′B′C′沿MN对折后,点A与A′重合,于是有AP=A′P,∠MPA=∠MPA′=90°.所以AA′、BB′和CC′与MN除了垂直以外,MN还经过线段AA′、BB′和CC′的中点.
对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.
自己动手画一个轴对称图形,并找出两对称点,看一下对称轴和两对称点连线的关系.
我们可以看出轴对称图形与两个图形关于直线对称一样,对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.
归纳图形轴对称的性质:
如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.
下面我们来探究线段垂直平分线的性质.
[探究1]
如下图.木条L与AB钉在一起,L垂直平分AB,P1,P2,P3,…是L上的点,分别量一量点P1,P2,P3,…到A与B的距离,你有什么发现?
1.用平面图将上述问题进行转化,先作出线段AB,过AB中点作AB的垂直平分线L,在L上取P1、P2、P3…,连结AP1、AP2、BP1、BP2、CP1、CP2…
2.作好图后,用直尺量出AP1、AP2、BP1、BP2、CP1、CP2…讨论发现什么样的规律.
探究结果:
线段垂直平分线上的点与这条线段两个端点的距离相等.即AP1=BP1,AP2=BP2,…
证明.
证法一:利用判定两个三角形全等.
如下图,在△APC和△BPC中,
△APC≌△BPC PA=PB.
证法二:利用轴对称性质.
由于点C是线段AB的中点,将线段AB沿直线L对折,线段PA与PB是重合的,因此它们也是相等的.
带着探究1的结论我们来看下面的问题.
[探究2]
如右图.用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭”通过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?为什么?
活动:
1.用平面图形将上述问题进行转化.作线段AB,取其中点P,过P作L,在L上取点P1、P2,连结AP1、AP2、BP1、BP2.会有以下两种可能.
2.讨论:要使L与AB垂直,AP1、AP2、BP1、BP2应满足什么条件?
探究过程:
1.如上图甲,若AP1≠BP1,那么沿L将图形折叠后,A与B不可能重合,也就是∠APP1≠∠BPP1,即L与AB不垂直.
2.如上图乙,若AP1=BP1,那么沿L将图形折叠后,A与B恰好重合,就有∠APP1=∠BPP1,即L与AB重合.当AP2=BP2时,亦然.
探究结论:
与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.也就是说在[探究2]图中,只要使箭端到弓两端的端点的距离相等,就能保持射出箭的方向与木棒垂直.
[师]上述两个探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.所以线段的垂直平分线可以看成是与线段两端点距离相等的所有点的集合.
Ⅲ.随堂练习
课本练习 1、2.
Ⅳ.课时小结
文档评论(0)