- 1、本文档共10页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
/cgi/content/full/313/5786/504/DC1
Supporting Online Material for
Reducing the Dimensionality of Data with Neural Networks
G. E. Hinton* and R. R. Salakhutdinov
*To whom correspondence should be addressed. E-mail: hinton@
Published 28 July 2006, Science 313, 504 (2006)
DOI: 10.1126/science.1127647
This PDF file includes:
Materials and Methods
Figs. S1 to S5
Matlab Code
Supporting Online Material
Details of the pretraining: To speed up the pretraining of each RBM, we subdivided all
datasets into mini-batches, each containing 100 data vectors and updated the weights after each
mini-batch. For datasets that are not divisible by the size of a minibatch, the remaining data
vectors were included in the last minibatch. For all datasets, each hidden layer was pretrained
for 50 passes through the entire training set. The weights were updated after each mini-batch
using the averages in Eq. 1 of the paper with a learning rate of . In addition, times the
previous update was added to each weight and
times the value of the weight was sub-
tracted to penalize large weights. Weights were initialized with small random values sampled
from a normal distribution with zero mean and standard deviation of . The Matlab code we
used is available at /
hinton/MatlabForSciencePaper.html
Details of the fine-tuning: For the fine-tuning, we used the method of conjugate gradients
on larger minibatches containing 1000 data vectors. We used Carl Rasmussen’s “minimize”
code (1). Three line searches were performed for each mini-batch in each epoch. To determine
an adequate number of epochs and to check for overfitting, we fine-tuned each autoencoder on
a fraction of the training data and tested its perf
您可能关注的文档
- A fuzzy hierarchy integral外文电子书籍.pdf
- A Practical Guide to Training RBM外文电子书籍.pdf
- Android用户界面外文电子书籍.pdf
- Crockett(2010)Emotion外文电子书籍.pdf
- Deep unsupervised learning on a desktop PC a primer for connitive scientist外文电子书籍.pdf
- demographic cliff外文电子书籍.pdf
- Design of Fuzzy Logic Controller for Two-wheeled Self-balancing Robot外文电子书籍.pdf
- Discriminative RBM are universal approximators for Discrete Data外文电子书籍.pdf
- DisruptionSelf-Report(Lieberman)外文电子书籍.pdf
- Effects of viscoelastic properties of engine cover sealing system on noise and vibration attenuation外文电子书籍.pdf
- 人教版九年级英语全一册单元速记•巧练Unit13【速记清单】(原卷版+解析).docx
- 人教版九年级英语全一册单元速记•巧练Unit9【速记清单】(原卷版+解析).docx
- 人教版九年级英语全一册单元速记•巧练Unit11【速记清单】(原卷版+解析).docx
- 人教版九年级英语全一册单元速记•巧练Unit14【单元测试·提升卷】(原卷版+解析).docx
- 人教版九年级英语全一册单元速记•巧练Unit8【速记清单】(原卷版+解析).docx
- 人教版九年级英语全一册单元速记•巧练Unit4【单元测试·提升卷】(原卷版+解析).docx
- 人教版九年级英语全一册单元速记•巧练Unit13【单元测试·基础卷】(原卷版+解析).docx
- 人教版九年级英语全一册单元速记•巧练Unit7【速记清单】(原卷版+解析).docx
- 苏教版五年级上册数学分层作业设计 2.2 三角形的面积(附答案).docx
- 人教版九年级英语全一册单元速记•巧练Unit12【单元测试·基础卷】(原卷版+解析).docx
最近下载
- 宏观经济学计算题大全.doc VIP
- 苏教版数学四年级上册第八单元认识射线、直线和角(课件).pptx
- 某市棚户区改造中区市政道路建设工程路面天然砂砾垫层施工方案.doc
- 淀粉制品公司风险分级管控与隐患排查治理双体系双控手册2022-2024.doc
- 福建省 政和县志.pdf
- 知识产权对策、研究成果管理及合作权益分配.pdf VIP
- 人工智能对学习、教学和教育的影响-The Impact of Artificial Intelligence on Learning, Teaching, and Education.docx
- 中越边广西龙邦镇护龙村跨国婚姻问题研究及对策.doc VIP
- 小学道德与法治六年级下册《我们生存的家园》教学设计及反思.doc
- 宏观经济学计算题.docx VIP
文档评论(0)