- 1、本文档共8页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
实用标准文案
精彩文档
直线和圆的方程
一、知识导学
1.两点间的距离公式:不论A(1,1),B(2,2)在坐标平面上什么位置,都有d=|AB|=,特别地,与坐标轴平行的线段的长|AB|=|2-1|或|AB|=|2-1|.
2.定比分点公式:定比分点公式是解决共线三点A(1,1),B(2,2),P(,)之间数量关系的一个公式,其中λ的值是起点到分点与分点到终点的有向线段的数量之比.这里起点、分点、终点的位置是可以任意选择的,一旦选定后λ的值也就随之确定了.若以A为起点,B为终点,P为分点,则定比分点公式是.当P点为AB的中点时,λ=1,此时中点坐标公式是.
3.直线的倾斜角和斜率的关系
(1)每一条直线都有倾斜角,但不一定有斜率.
(2)斜率存在的直线,其斜率与倾斜角α之间的关系是=tanα.
4.确定直线方程需要有两个互相独立的条件。直线方程的形式很多,但必须注意各种形式的直线方程的适用范围.
名称
方程
说明
适用条件
斜截式
为直线的斜率
b为直线的纵截距
倾斜角为90°的直线不能用此式
点斜式
() 为直线上的已知点,为直线的斜率
倾斜角为90°的直线不能用此式
两点式
=
(),()是直线上两个已知点
与两坐标轴平行的直线不能用此式
截距式
+=1
为直线的横截距
b为直线的纵截距
过(0,0)及与两坐标轴平行的直线不能用此式
一般式
,,分别为斜率、横截距和纵截距
A、B不全为零
5.两条直线的夹角。当两直线的斜率,都存在且·≠ -1时,tanθ=,当直线的斜率不存在时,可结合图形判断.另外还应注意到:“到角”公式与“夹角”公式的区别.
6.怎么判断两直线是否平行或垂直?判断两直线是否平行或垂直时,若两直线的斜率都存在,可以用斜率的关系来判断;若直线的斜率不存在,则必须用一般式的平行垂直条件来判断.
(1)斜率存在且不重合的两条直线1∶, 2∶,有以下结论:
①1∥2=,且b1=b2
②1⊥2·= -1
(2)对于直线1∶,2 ∶,当1,2,1,2都不为零时,有以下结论:
①1∥2=≠
②1⊥212+12 = 0
③1与2相交≠
④1与2重合==
7.点到直线的距离公式.
(1)已知一点P()及一条直线:,则点P到直线的距离d=;
(2)两平行直线1: , 2: 之间的距离d=.
8.确定圆方程需要有三个互相独立的条件。圆的方程有两种形式,要知道两种形式之间的相互转化及相互联系
(1)圆的标准方程:,其中(,b)是圆心坐标,是圆的半径;
(2)圆的一般方程:(>0),圆心坐标为(-,-),半径为=.
二、疑难知识导析
1.直线与圆的位置关系的判定方法.
(1)方法一 直线:;圆:.
一元二次方程
(2)方法二 直线: ;圆:,圆心(,b)到直线的距离为
d=
2.两圆的位置关系的判定方法.
设两圆圆心分别为O1、O2,半径分别为1,2,|O1O2|为圆心距,则两圆位置关系如下:
|O1O2|1+2两圆外离;
|O1O2|=1+2两圆外切;
| 1-2||O1O2|1+2两圆相交;
| O1O2 |=|1-2|两圆内切;
0| O1O2|| 1-2|两圆内含.
三、经典例题导讲
[例1]直线l经过P(2,3),且在x,y轴上的截距相等,试求该直线方程.
错解:设直线方程为:,又过P(2,3),∴,求得a=5
∴直线方程为x+y-5=0.
错因:直线方程的截距式: 的条件是:≠0且b≠0,本题忽略了这一情形.
正解:在原解的基础上,再补充这样的过程:当直线过(0,0)时,此时斜率为:,
∴直线方程为y=x
综上可得:所求直线方程为x+y-5=0或y=x .
[例2]已知动点P到y轴的距离的3倍等于它到点A(1,3)的距离的平方,求动点P的轨迹方程.
错解:设动点P坐标为(x,y).由已知3
化简3=x2-2x+1+y2-6y+9 .
当x≥0时得x2-5x+y2-6y+10=0 . ①
当x<0时得x2+ x+y2-6y+10=0 . ②
错因:上述过程清楚点到y轴距离的意义及两点间距离公式,并且正确应用绝对值定义将方程分类化简,但进一步研究化简后的两个方程,配方后得
(x- eq \f(5,2) )2+(y-3)2 = eq \f(21,4) ① 和 (x+ eq \f(1,2) )2+(y-3)2 = - eq \f(3,4) ②
两个平方数之和不可能为负数,故方程②的情况不会出现.
正解: 接前面的过程,∵方程①化为(x- eq \f(5,2) )2+(y-3)2 = eq \f(21,4) ,方程②化为(x+ eq \f(1,2) )2+(y-3)2 = - eq \f(3,4) ,由于两个平方数之和不可能为负数,故所求动
文档评论(0)