解析几何中定值和定点问题.doc

  1. 1、本文档共11页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
PAGE PAGE 10 解析几何中的定值定点问题(一) 一、定点问题 【例1】.已知椭圆:的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. ⑴求椭圆C的方程; ⑵设,、是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,求直线的斜率的取值范围; ⑶在⑵的条件下,证明直线与轴相交于定点. 解:⑴由题意知,所以,即,又因为,所以,故椭圆的方程为:. ⑵由题意知直线的斜率存在,设直线的方程为 ① 联立消去得:, 由得, 又不合题意, 所以直线的斜率的取值范围是或. ⑶设点,则,直线的方程为, 令,得,将代入整理,得. ② 由得①代入②整理,得, 所以直线与轴相交于定点. 【针对性练习1】 在直角坐标系中,点到点,的距离之和是,点的轨迹是与轴的负半轴交于点,不过点的直线与轨迹交于不同的两点和. ⑴求轨迹的方程; ⑵当时,求与的关系,并证明直线过定点. 解:⑴∵点到,的距离之和是,∴的轨迹是长轴为,焦点在轴上焦中为的椭圆,其方程为. ⑵将,代入曲线的方程,整理得 ,因为直线与曲线交于不同的两点和,所以 ① 设,,则, ② 且,显然,曲线与轴的负半轴交于点,所以,.由,得. 将②、③代入上式,整理得.所以,即或.经检验,都符合条件①,当时,直线的方程为.显然,此时直线经过定点点.即直线经过点,与题意不符.当时,直线的方程为. 显然,此时直线经过定点点,且不过点.综上,与的关系是:,且直线经过定点点. 【针对性练习2】在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA、TB与椭圆分别交于点M、,其中m0,。 (1)设动点P满足,求点P的轨迹; (2)设,求点T的坐标; (3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。 【解析】 本小题主要考查求简单曲线的方程,考查方直线与椭圆的方程等基础知识。考查运算求解能力和探究问题的能力。 解:(1)设点P(x,y),则:F(2,0)、B(3,0)、A(-3,0)。 由,得 化简得。 故所求点P的轨迹为直线。 (2)将分别代入椭圆方程,以及得:M(2,)、N(,) 直线MTA方程为:,即, 直线NTB 方程为:,即。 联立方程组,解得:, 所以点T的坐标为。 (3)点T的坐标为 直线MTA方程为:,即, 直线NTB 方程为:,即。 分别与椭圆联立方程组,同时考虑到, 解得:、。 (方法一)当时,直线MN方程为: 令,解得:。此时必过点D(1,0); 当时,直线MN方程为:,与x轴交点为D(1,0)。 所以直线MN必过x轴上的一定点D(1,0)。 (方法二)若,则由及,得, 此时直线MN的方程为,过点D(1,0)。 若,则,直线MD的斜率, 直线ND的斜率,得,所以直线MN过D点。 因此,直线MN必过轴上的点(1,0)。 【针对性练习3】已知椭圆C中心在原点,焦点在轴上,焦距为,短轴长为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线:与椭圆交于不同的两点(不是椭圆的左、右顶点),且以为直径的圆经过椭圆的右顶点.求证:直线过定点,并求出定点的坐标. 解: (Ⅰ)设椭圆的长半轴为,短半轴长为,半焦距为,则 解得 ∴ 椭圆C的标准方程为 . …… 4分 (Ⅱ)由方程组 消去,得 . …… 6分 由题意△, 整理得: ① ………7分 设,则 , . ……… 8分 由已知,, 且椭圆的右顶点为, ∴ .   …… 10分 即 , 也即 , 整理得.解得 或 ,均满足① ……… 11分 当时,直线的方程为 ,过定点,不符合题意舍去; 当时,直线的方程为 ,过定点, 二、定值问题 【例2】.已知椭圆的中心在原点,焦点在轴的非负半轴上,点到短轴端点的距离是4,椭圆上的点到焦点距离的最大值是6. (Ⅰ)求椭圆的标准方程和离心率; (Ⅱ)若为焦点关于直线的对称点,动点满足,问是否存在一个定点,使到点的距离为定值?若存在,求出点的坐标及此定值;若不存在,请说明理由. 解:(Ⅰ)设椭圆长半轴长及半焦距分别为,由已知得 . 所以椭圆的标准方程为. 离心率 (Ⅱ),设由得 化简得,即 故存在一个定点,使到点的距离为定值,其定值为 【例3】.已知抛物线C的顶点在坐标原点,焦点在x轴上,P(2,0)为定点. (Ⅰ)若点P为抛物线的焦点,求抛物线C的方程; (Ⅱ)若动圆M过点P,且圆心M在抛物线C上运动,点A、B是圆M与轴的两交点,试推断是否存在一条抛物线C,使|AB|为定值?若存在,求这个定值;若不存在,说明理由. 解:(Ⅰ) 设抛物线方程为,则抛物线的焦点坐标为.由已知,,即,故抛物线C的方程是.

文档评论(0)

xina171127 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档