《旋转》复习课件.pptVIP

  1. 1、本文档共27页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
《旋转》复习课件

答案:C 旋转的应用: 例10.已知E、F分别在正方形ABCD边AB和BC上,AB=1,∠EDF=45°.求△BEF的周长. 解:∵ABCD是正方形, ∴∠ADC=90°,AD=DC=AB=BC=1. 将△ADE绕着点D逆时针旋转90°到△DCM的位置.由旋转的特征可知AE=CM,DE=DM,∠ADE=∠CDM. ∵∠EDF=45°, ∴∠FDM=45°. ∴△DEF与△DMF关于DF成轴对称, ∴EF=FM. △BEF的周长=BE+EF+BF =BE+(FC+CM)+BF=BE+FC+AE+BF =(BE+AE)+(FC+BF)=BA+BC=2, 所以△BEF的周长为2. 例11.如图,水渠旁有一大块L形耕地,要画一条直线为分界线,把耕地平均分成两块,分别承包给两个人,BC边是灌溉用的水渠的一岸.每块土地都要有水渠,怎么平分土地才能满足每个人的需要? 例11.把正方形ADCB绕着点A,按顺时针方向旋转得到正方形AGFE,边BC与GF交于点H(如图).试问线段GH与线段HF相等吗? 请先观察猜想,然后再证明你的猜想. 证法1:连结AH, ∵四边形ABCD,AEFG都是正方形 ∴∠B=∠G=90 ° 由题意知AG=AB,又AH=AH. ∴Rt△AGH≌Rt△ABH(HL), ∴HG=HB. 证法2:连结BG, ∵四边形ABCD,AEFG都是正方形. ∴∠ABC=∠AGF=90 ° 由题意知AG=AB, ∴∠AGB=∠ABG, ∴∠HGB=∠HBG ∴HG=HB. * 第三十章 旋转复习 考试说明(数学课标卷) 基本要求: 通过具体实例认识图形的旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;会识别中心对称图形(从略高要求移动到基本要求) 较高要求: 能运用旋转的知识解决简单的计算问题;运用旋转的知识进行图案设计;与其他变换共同解决实际问题. 略高要求: 能够按要求作出简单平面图形旋转后的图形,能依据旋转后的图形,指出旋转中心和旋转角. 重点:了解图形旋转的特征,认识旋转的基本性质、中心对称及其性质.          难点:旋转图形性质的应用. (一)图形的旋转 1.旋转的定义: 在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形变换称为旋转,这个定点称为旋转中心,转动的角称为旋转角. 注意:在旋转过程中保持不动的点是旋转中心. 2.旋转的三个要素: 旋转中心、旋转的角度和方向. 3.旋转的性质: (1)对应点到旋转中心的距离相等; (2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前后的图形全等. 例1.台风“麦莎”过去后,许多大树被大风刮倒吹折.一棵笔直的大树被风吹折后倒地,折断点为B(B点离地面为树高的 处).求∠B的度数. B C A A′ 例2.如图,Rt△ABC中,∠C=90°,∠ABC=60°,△ABC以点C为中心旋转到△A′B′C的位置,使B在斜边A′B′上,A′C与AB相交于D,试确定∠BDC的度数. 解:∵△A′B′C是由△ABC旋转所得, ∴∠B′=∠ABC=60°,B′C=BC, ∴△B′BC是等边三角形. ∴∠BCB′=60°. ∵∠BCD=90°-60°=30°, ∴∠BDC=180°- (60°+30°) =180°-90°=90°. 4.简单图形的旋转作图: (1)确定旋转中心; (2)确定图形中的关键点; (3)将关键点沿指定的方向旋转指定的角度; (4)连结各点,得到原图形旋转后的图形. 例3. 把△AOB绕点O逆时针方向旋转90°,画出旋转后的图形. 错解:旋转时,把∠AOB′看作90°进行了旋转. 正解: 按逆时针方向把OA旋转到OA′,使∠AOA′=90°,把OB旋转到OB′,使∠BOB′=90°,如图. (二)中心对称 1.中心对称图形与对称中心: 在平面内,某一图形绕某一点旋转180°后能与原来的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做对称中心. 了解平行四边形、圆是中心对称图形. 例4.下列图形中,中心对称图形是 ( ) 答案:B 例5.下列图形中,既是中心对称又是轴对称的图形是( ) 答案:C 2.中心对称和对称中心: 把一个图形绕着某一点旋转180°后,如果它能和另一个图形完全重合,那么称这两个图形成中心对称,这个点叫做对称中心.这两个图形中的对应点,叫做关于中心的对称点. 3.中心对称和中心对称图形的关系: 4.中心对称的特征: 成中心对称的两个图形中,连结对称点的线段都经过对称中心,并且都被对称中心平分; 反之,如果两个图形的对应点连成的线段都经过某一点,并

文档评论(0)

专注于电脑软件的下载与安装,各种疑难问题的解决,office办公软件的咨询,文档格式转换,音视频下载等等,欢迎各位咨询!

1亿VIP精品文档

相关文档