数学:立体几何中的向量方法(一)-课件-(人教版)ppt.pptVIP

数学:立体几何中的向量方法(一)-课件-(人教版)ppt.ppt

  1. 1、本文档共34页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
数学:立体几何中的向量方法(一)-课件-(人教版)ppt

* 研究 从今天开始,我们将进一步来体会向量这一工具在立体几何中的应用. 共线向量定理: 复习: 共面向量定理: 思考1: 1、如何确定一个点在空间的位置? 2、在空间中给一个定点A和一个定方向(向量),能确定一条直线在空间的位置吗? 3、给一个定点和两个定方向(向量),能确定一个平面在空间的位置吗? 4、给一个定点和一个定方向(向量),能确定一个平面在空间的位置吗? O P 一、点的位置向量 A B P 二、直线的向量参数方程 此方程称为直线的向量参数方程。这样点A和向量 不仅可以确定直线 l的位置,还可以具体写出l上的任意一点。 P O 除此之外, 还可以用垂直于平面的直线的方向向量(这个平面的法向量)表示空间中平面的位置. 这样,点O与向量 不仅可以确定平面 的位置,还可以具体表示出 内的任意一点。 三、平面的法向量 A 平面的法向量:如果表示向量 的有向线段所在直线垂直于平面 ,则称这个向量垂直于平面 ,记作 ⊥ ,如果 ⊥ ,那 么 向 量 叫做平面 的法向量. 给定一点A和一个向量 ,那么过点A,以向量 为法向量的平面是完全确定的. 几点注意: 1.法向量一定是非零向量; 2.一个平面的所有法向量都互相平行; 3.向量 是平面的法向量,向量 是与平面平行或在平面内,则有 l A 因为方向向量与法向量可以确定直线和平面的位置,所以我们应该可以利用直线的方向向量与平面的法向量表示空间直线、平面间的平行、垂直、夹角等位置关系.你能用直线的方向向量表示空间两直线平行、垂直的位置关系以及它们之间的夹角吗?你能用平面的法向量表示空间两平面平行、垂直的位置关系以及它们二面角的大小吗? 思考2: 四、平行关系: 五、垂直关系: 基础性训练1 1.设 分别是直线l1,l2的方向向量,根据下 列条件,判断l1,l2的位置关系. 平行 垂直 平行 基础性训练2 1.设 分别是平面α,β的法向量,根据 下列条件,判断α,β的位置关系. 垂直 平行 相交 基础性训练3 1、设平面 的法向量为(1,2,-2),平面 的法向量为(-2,-4,k),若 ,则k= ;若 则 k= 。 2、已知 ,且 的方向向量为(2,m,1),平面的法向量为(1,1/2,2),则m= . 3、若 的方向向量为(2,1,m),平面 的法向量为(1,1/2,2),且 ,则m= . ∥ A B C D A1 B1 C1 D1 M N 用空间向量解决平行问题 ∥ A B C D A1 B1 C1 D1 E F G 用空间向量解决平行问题 用空间向量解决垂直问题 A B C D A1 B1 C1 D1 O G 用空间向量解决垂直问题 z x y P G F A B C E 六、夹角: l m l l m

文档评论(0)

zsmfjh + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档