微积分在高中物理中的应用.docVIP

  1. 1、本文档共3页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
微积分在高中物理中的应用

微积分在高中物理中的应用 非匀变速直线运动的位移计算 一小球以速度做直线运动,其速度随时间变化规律为,求小球在0—1s内的位移。 由题意可知,小球的速度并不是均匀变化的,无法运用匀变速直线运动的公式计算位移,现在尝试运用微积分的思想来解决问题。 试想,将[0,1]这段时间分为n个时间段: [0,],[,],…,[,1] 每个时间段的长度为 当Δt很小时,在[t,t]上,v(t)的变化很小,可以认为物体近似的以速度v(t)做匀速运动,在这一段时间上物体的位移 在[0,1]上物体的总位移 所以,n越大即越小时,时间段[0,1]分得越细,与的近似程度就越好,当时,两者之差趋向于零,即 所以,小球在0—1s内的位移为m 由此可以看出利用微积分思想可以解决非匀速直线运动的位移问题。此过程比较麻烦,也可以直接使用牛顿—莱布尼茨公式。 变力作功 在弹簧的弹性限度内,将其从平衡位置拉到距平衡位置m处,已知弹簧劲度系数为,求此过程中拉力F所做的功W。 在弹性限度内,拉力F与弹簧拉伸长度成正比 所以 拉力F所做的功为 交变电流有效值的计算 求正弦式交变电流的有效值 解: 设电流的有效值为,则 将等号两边同时平方得到 令 所以在半个周期内 所以 正弦式交流电的有效值为

您可能关注的文档

文档评论(0)

zhengshumian + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档