- 1、本文档共55页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
推九级下册北师大版数学册教案及教学设计
第一章 直角三角形的边角关系
§1.1 从梯子的倾斜程度谈起(第一课时)
学习目标:
1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.
2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算.
学习重点:
1.从现实情境中探索直角三角形的边角关系.
2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.
学习难点:
理解正切的意义,并用它来表示两边的比.
学习方法:
引导—探索法. 更多免费教案下载绿色圃中小学教育网 分站
学习过程:
一、生活中的数学问题:
1、你能比较两个梯子哪个更陡吗?你有哪些办法?
2、生活问题数学化:
⑴如图:梯子AB和EF哪个更陡?你是怎样判断的?
⑵以下三组中,梯子AB和EF哪个更陡?你是怎样判断的?
二、直角三角形的边与角的关系(如图,回答下列问题)
⑴Rt△AB1C1和Rt△AB2C2有什么关系?
⑵
⑵有什么关系?
⑶如果改变B2在梯子上的位置(如B3C3)呢?
⑷由此你得出什么结论?
三、例题:
例1、如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?
例2、在△ABC中,∠C=90°,BC=12cm,AB=20cm,求tanA和tanB的值.
四、随堂练习:
1、如图,△ABC是等腰直角三角形,你能根据图中所给数据求出tanC吗?
2、如图,某人从山脚下的点A走了200m后到达山顶的点B,已知点B到山脚的垂直距离为55m,求山的坡度.(结果精确到0.001)
3、若某人沿坡度i=3:4的斜坡前进10米,则他所在的位置比原来的位置升高________米.
4、菱形的两条对角线分别是16和12.较长的一条对角线与菱形的一边的夹角为θ,则tanθ=______.
5、如图,Rt△ABC是一防洪堤背水坡的横截面图,斜坡AB的长为12 m,它的坡角为45°,为了提高该堤的防洪能力,现将背水坡改造成坡比为1:1.5的斜坡AD,求DB的长.(结果保留根号)
五、课后练习:
1、在RtABC中,∠C=90°,AB=3,BC=1,则tanA= _______.
在ABC中,AB=10,AC=8,BC=6,则tanA=_______.
在ABC中,AB=AC=3,BC=4,则tanC=______.
在RtABC中,∠C是直角,∠A、∠B、∠C的对边分别是a、b、c,且a=24,c= 25,求tanAtanB的值.若三角形三边的比是25:24:7,求最小角值.6、如图,在菱形ABCD中,AE⊥BC于E,EC=1,B=, 求菱形的边长和四边形AECD的周长.7、已知:如图,斜坡AB的倾斜角a,且tan=,现有一小球从坡底A处以20cm/s 的速度向坡顶B处移动,则小球以多大的速度向上升高?探究 ⑴、a克糖水中有b克糖(ab0),则糖的质量与糖水质量的比为_______; 若再添加c克糖(c0),则糖的质量与糖水的质量的比为________.生活常识告诉我们: 添加的糖完全溶解后,糖水会更甜,请根据所列式子及这个生活常识提炼出一个不等式: ____________.
我们知道山坡的坡角越大,则坡越陡,联想到课本中的结论:tanA的值越大, 则坡越陡,我们会得到一个锐角逐渐变大时,它的正切值随着这个角的变化而变化的规律,请你写出这个规律:_____________.
如图,在Rt△ABC中,∠B=90°,AB=a,BC=b(ab),延长BA、BC,使AE=CD=c, 直线CA、DE交于点F,请运用(2) 中得到的规律并根据以上提供的几何模型证明你提炼出的不等式.
学习方法:
探索——交流法.
学习过程:
一、正弦、余弦及三角函数的定义
想一想:如图
(1)直角三角形AB1C1和直角三角形AB2C2有什么关系?
(2) 有什么关系? 呢?
(3)如果改变A2在梯子A1B上的位置呢?你由此可得出什么结论?
(4)如果改变梯子A1B的倾斜角的大小呢?你由此又可得出什么结论?
请讨论后回答.
二、由图讨论梯子的倾斜程度与sinA和cosA的关系:
三、例题:
例1、如图,在Rt△ABC中,∠B=90°,AC=200.sinA=0.6,求BC的长.
例2、做一做:
如图,在Rt△ABC中,∠C=90°,cosA=,AC=10,AB等于多少?sinB呢?cosB、sinA呢?你还能得出类似例1的结论吗?请用一般式表达.
四、随堂练习:
1、在等腰三角形ABC中,AB=AC=5,BC=6,求sinB,cosB,tanB.
2、在△ABC中,∠C=90°,sinA=,BC=20,求△ABC的周长和面积.
3、在△ABC中.∠C=90°,若tanA=,则sinA= .
4、已知:如图,CD是Rt△ABC的斜边AB上的高
您可能关注的文档
- 我进入工段之后工作体会.doc
- 战狼观后感心得体三篇(各种身份汇编).doc
- 战略研究事关矿业发展方向与未来——谈贯彻落实十八届三中全会精神推矿业科学发展.doc
- 战狼观后感文稿两篇.doc
- 房产局维党的政治纪律的工作总结.doc
- 房产销售员试期工作计划范文两份.doc
- 房县尹吉甫镇学五级学下一单元月考试卷.doc
- 房地产公司财务部经理得体会篇.doc
- 房地产政协委考察材料两份.doc
- 房地产新工入职培训考试题.doc
- 广西壮族自治区钦州市2024-2025学年高二10月月考历史历史试题(解析版).docx
- 河南省百师联盟2024-2025学年高二上学期10月月考历史历史试题(解析版).docx
- 山东省泰安市2024-2025学年高三上学期第一次学月质量检测历史试题(解析版).docx
- 山西省晋中市部分高中学校2024-2025学年高二上学期9月月考历史试题(解析版).docx
- 江西省部分学校2024-2025学年高三上学期9月月考考试历史试题(解析版).docx
- 贵州省贵阳市乌当区某校2024-2025学年高一上学期第一次月考历史历史试题(解析版).docx
- 贵州省贵阳市六校联盟2024-2025学年高二上学期联合考试(一)历史历史试卷(解析版).docx
- 河南省洛阳市强基联盟2024-2025学年高二上学期10月联考历史试题(解析版).docx
- 辽宁省名校联盟2024-2025学年高二上学期第一次月考历史试卷(解析版).docx
- 黑龙江省龙东联盟2024-2025学年高一上学期10月月考历史试卷(解析版).docx
文档评论(0)