26.4二次函数实际应用最值1.ppt

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
26.4二次函数实际应用最值1

“二次函数应用” 的思路 * 二次函数y=ax2+bx+c(a≠0) 求下列函数的最大值或最小值: 例1:用总长为60米的篱笆围成矩形场地,矩形面积y随矩形一边长x的变化而变化.当x是多少时,场地的面积y最大? A B C D x y (1)求y与x的函数关系式及 自变量的取值范围; (2)怎样围才能使菜园的面积最大? 最大面积是多少? 例2:如图,用长60米的篱笆围成一个一面靠 墙的长方形的菜园,设AB为x米,面 积为y平方米。 A B C D 独立思考 用48米长的竹篱笆围建一矩形养鸡场,养 鸡场一面用砖砌成,另三面用竹篱笆围成,并且在与砖墙相对的一面开2米宽的门,问养鸡场的边长为多少米时,养鸡场占地面积最大?最大面积是多少? 2m ym2 xm xm 如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。 (1)求S与x的函数关系式及自变量的取值范围; (2)当x取何值时所围成的花圃面积最大,最大值是多少? (3)若墙的最大可用长度为8米,则求围成花圃的最大面积。 A B C D 解: (1) ∵ AB为x米、篱笆长为24米 ∴ 花圃宽为(24-4x)米 (3) ∵墙的可用长度为8米 (2)当x= 时,S最大值= =36(平方米) ∴ S=x(24-4x) =-4x2+24 x (0x6) ∴ 024-4x ≤8 4≤x6 ∴当x=4cm时,S最大值=32 平方米 1.理解问题; 回顾本节“最大面积”解决问题的过程,你能总结一下解决此类问题的基本思路吗?与同伴交流. 议一议 2.分析问题中的变量和常量,以及它们之间的关系; 3.用数学的方式(建立函数关系)表示出它们之间的关系; 4.运用数学知识(利用函数性质)求解; 5.检验结果的合理性, 给出问题的解答. *

文档评论(0)

xy88118 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档