- 1、本文档共10页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
2011年高考数学专题的讲义数列综合
第八讲 数列综合
★★★高考在考什么
【考题回放】
1.(宁夏)已知成等比数列,且曲线的顶点是,则等于( B )
A.3 B.2 C.1 D.
2.(江西)已知等差数列的前项和为,若,则 .7
3.(辽宁卷) 在等比数列中,,前项和为,若数列也是等比数列,则等于
A. B. C. D.
【解析】因数列为等比,则,因数列也是等比数列,
则
即,所以,故选择答案C。
4.(湖南)设集合, 都是的含两个元素的子集,且满足:对任意的,(,),都有(表示两个数中的较小者),则的最大值是( B )
A.10 B.11 C.12 D.13
5.(陕西卷) 已知正项数列{an},其前n项和Sn满足10Sn=an2+5an+6且a1,a3,a15成等比数列,求数列{an}的通项an .
解析:解: ∵10Sn=an2+5an+6, ① ∴10a1=a12+5a1+6,解之得a1=2或a
又10Sn-1=an-12+5an-1+6(n≥2),②
由①-②得 10an=(an2-an-12)+6(an-an-1),即(an+an-1)(an-an-1-5)=0
∵an+an-10 , ∴an-an-1=5 (n≥2).
当a1=3时,a3=13,a15=73. a1, a3,a15不成等比数列∴a1≠3;
当a1=2时,a3=12, a15=72, 有a32=a1a15 , ∴a1=2, ∴an=5n
6.(广东卷)已知公比为的无穷等比数列各项的和为9,无穷等比数列各项的和为.
( = 1 \* ROMAN I)求数列的首项和公比;
( = 2 \* ROMAN II)对给定的,设是首项为,公差为的等差数列,求的前10项之和;
解: (Ⅰ)依题意可知,
(Ⅱ)由(Ⅰ)知,,所以数列的的首项为,公差,
,即数列的前10项之和为155.
★★★高考要考什么
本章主要涉及等差(比)数列的定义、通项公式、前n项和及其性质,数列的极限、无穷等比数列的各项和.同时加强数学思想方法的应用,是历年的重点内容之一,近几年考查的力度有所增加,体现高考是以能力立意命题的原则.
高考对本专题考查比较全面、深刻,每年都不遗漏.其中小题主要考查
间相互关系,呈现“小、巧、活”的特点;大题中往往把等差(比)数列与函数、方程与不等式,解析几何 等知识结合,考查基础知识、思想方法的运用,对思维能力要求较高,注重试题的综合性,注意分类讨论.
高考中常常把数列、极限与函数、方程、不等式、解析几何等等相关内容综合在
一起,再加以导数和向量等新增内容,使数列综合题新意层出不穷.常见题型:
(1)由递推公式给出数列,与其他知识交汇,考查运用递推公式进行恒等变形、推理与综合能力.
(2)给出Sn与an的关系,求通项等,考查等价转化的数学思想与解决问题能力.
(3)以函数、解析几何的知识为载体,或定义新数列,考查在新情境下知识的迁移能力.
理科生需要注意数学归纳法在数列综合题中的应用,注意不等式型的递推数列.
★★ 突 破 重 难 点
【范例1】已知数列,满足,,且()
(I)令,求数列的通项公式;
(II)求数列的通项公式及前项和公式.
解:(I)由题设得,即()
易知是首项为,公差为2的等差数列,通项公式为.
(II)解:由题设得,令,则.
易知是首项为,公比为的等比数列,通项公式为. 由解得
, 求和得.
【变式】(文)在等差数列中,,前项和满足条件,
(Ⅰ)求数列的通项公式;
(Ⅱ)记,求数列的前项和。
解:(Ⅰ)设等差数列的公差为,由得:,所以,即,又=,所以。
(Ⅱ)由,得。所以,
当时,;
当时,
,
即。
(理)已知二次函数的图像经过坐标原点,其导函数为,数列的前n项和为,点均在函数的图像上。
(Ⅰ)、求数列的通项公式;
(Ⅱ)、设,是数列的前n项和,求使得对所有都成立的最小正整数m;
解:(Ⅰ)设这二次函数f(x)=ax2+bx (a≠0) ,则 f`(x)=2ax+b,由于f`(x)=6x-2,得
a=3 , b=-2, 所以 f(x)=3x2-2x.
又因为点均在函数的图像上,所以=3n2-2n.
当n≥2时,an=Sn-Sn-1=(3n2-2n)-=6n-5.
当n=1时,a1=S1=3×12-2=6×1-5,所以,an=6n-5 ()
(Ⅱ)由(Ⅰ)得知==,
故Tn===(1-).
因此,要使(1-)()成立的m,必须且仅须满足≤,即m≥10,所以满足要求的最小正整数m为10.
【范例2】已知函数,是方程f(x)=0的两个根,是f(x)的导数;设,(n=1,2,……)
(1)求的值;
(2)证明:对任意的正整数n,都有a;
文档评论(0)