- 1、本文档共10页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
2011年高考数学专题讲义空间位置关系和证明
第二十三讲 空间位置关系与证明
★★★高考在考什么
【考题回放】
1.(浙江)若是两条异面直线外的任意一点,则(B )
A.过点有且仅有一条直线与都平行
B.过点有且仅有一条直线与都垂直
C.过点有且仅有一条直线与都相交
D.过点有且仅有一条直线与都异面
2.(湖南)如图,过平行六面体ABCD-A1B1C1D1
点作直线,其中与平面DBB1D1平行的直线共有( D )
A.4条 B.6条 C.8条 D.12条
3.(湖北)平面外有两条直线和,如果和在平面内的射影分别是和,给出下列四个命题:
①;
②;
③与相交与相交或重合;
④与平行与平行或重合.
其中不正确的命题个数是( D )
A.1 B.2 C.3 D.4
4.(湖北)关于直线、与平面、,有下列四个命题:(D )
①且,则; ②且,则;
③且,则; ④且,则.
其中真命题的序号是:
A. ①、② B. ③、④ C. ①、④ D. ②、③
5.在正方形中,过对角线的一个平面交于E,交于F,则( )
四边形一定是平行四边形
四边形有可能是正方形
四边形在底面ABCD内的投影一定是正方形
四边形有可能垂直于平面
以上结论正确的为 ①③④ 。(写出所有正确结论的编号)
6.(上海)在平面上,两条直线的位置关系有相交、平行、重合三种. 已知是两个相交平面,空间两条直线在上的射影是直线,在上的射影是直线.用与,与的位置关系,写出一个总能确定与是异
面直线的充分条件: ,并且与相交(,并且与相交)
★★高考要考什么
线与线的位置关系:平行、相交、异面;
线与面的位置关系:平行、相交、线在面内;
面与面的位置关系:平行、相交;
二.转化思想:
;
★★★高考将考什么
【范例1】(天津)如图,在四棱锥中,底面,,,是的中点.
(Ⅰ)证明;
(Ⅱ)证明平面;
(Ⅲ)求二面角的大小.
(Ⅰ)证明:在四棱锥中,
因底面,平面,故.
,平面.
而平面,.
(Ⅱ)证明:由,,可得.
是的中点,.
由(Ⅰ)知,,且,所以平面.
而平面,.
底面在底面内的射影是,,.
又,综上得平面.
(Ⅲ)解法一:过点作,垂足为,连结.则(Ⅱ)知,平面,在平面内的射影是,则.
因此是二面角的平面角.
由已知,得.设,
可得.
在中,,,
则.
在中,.
解法二:由题设底面,平面,则平面平面,交线为.
过点作,垂足为,故平面.过点作,垂足为,连结,故.因此是二面角的平面角.
由已知,可得,设,
可得.
,.
于是,.
在中,.
所以二面角的大小是.
所以二面角的大小是.
M变式:如图,在五面体中,点是矩形的对角线的交点,面是等边三角形,棱.
M
(1)证明//平面;
(2)设,证明平面.
证明:(Ⅰ)取CD中点M,连结OM.
在矩形ABCD中,,又,则,
连结EM,于是四边形EFOM为平行四边形.
又平面CDE, EM平面CDE, ∴ FO∥平面CDE
(Ⅱ)证明:连结FM,由(Ⅰ)和已知条件,在等边△CDE中,
且.
因此平行四边形EFOM为菱形,从而EO⊥FM而FM∩CD=M,
∴CD⊥平面EOM,从而CD⊥EO. 而,所以EO⊥平面CDF.
ABC
A
B
C
D
【范例2】(安徽)如图,在六面体中,四边形是边长为2的正方形,四边形是边长为1的正方形,平面
,平面,.
(Ⅰ)求证:与共面,与共面.
(Ⅱ)求证:平面平面;
(Ⅲ)求二面角的大小(用反三角函数值表示).
证明:以为原点,以所在直线分别为轴,
轴,轴建立空间直角坐标系如图,
则有.
(Ⅰ)证明:
.
ABC
A
B
C
D
与平行,与平行,
于是与共面,与共面.
(Ⅱ)证明:,
,
,.
与是平面内的两条相交直线.
平面.
又平面过.
平面平面.
(Ⅲ)解:.
设为平面的法向量,
,.
于是,取,则,.
设为平面的法向量,
,.
于是,取,则,.
.
二面角的大小为.
解法2(综合法):
(Ⅰ)证明:平面,平面.
ABCD,,平面平面.
A
B
C
D
于是,.
设分别为的中点,连结,
有.
,
于是.
由,得,
故,与共面.
过点作平面于点,
则,连结,
于是,,.
,.
,.
所以点在上,故与共面.
(Ⅱ)证明:平面,,
又(正方形的对角线互相垂直),
与是平面内的两条相交直线,
平面.
又平面过,平面平面.
(Ⅲ)解:直线是直线在平面上的射影,,
根据三垂线定理,有.
过点在平面内作于,连结,
则平面,
于是,
所以,是二面角的一个平面角.
根据勾股定理,有.
,有,,,.
,,
二面角的大小为.
变式(江苏)如图,已知是棱长为的正方体,
点在上,点在上,且.
(1)求
您可能关注的文档
- 2010年06月芜湖“华仑港湾”营销战略和策略.ppt
- 2010年6月15日沈阳远洋客群特征和潜在客户需求研究报告.ppt
- 2010年6月济南海尔绿城酒店地块二期市场分析和定位报告.ppt
- 2010年4月淮安香格里拉项目营销战略和销售执行.ppt
- 2010年02月06日河源罗曼温泉城项目整体定位和发展战略.ppt
- 2010年3月24日包头中冶番茄社区全新策略和推广提报.ppt
- 2010年上半年会计从业考试财经法规和职业道德试题.doc
- 2010年AHA心肺复苏指南 - 由ABC到CAB意义和启示 社区医生版.ppt
- 2010年7月27日菏泽山东天元置业和平印象市场调研和定位报告.ppt
- 2010年上海会计从业财经法规和会计职业道德考试真题及答案.doc
最近下载
- 四川省2004年肺结核流行特征及空间聚集性分析.pdf VIP
- 《小肠梗阻的诊断与治疗中国专家共识(2023版)》解读.pptx
- 回收、暂存、中转废矿物油与含矿物油废物项目突发环境事件应急预案.docx
- 电路与电子学-课程教学大纲.doc VIP
- 安徽省A10联盟2023-2024学年高二上学期11月期中考试物理试题及答案.pdf
- 第三届全国新能源汽车关键技术技能大赛(汽车电气装调工赛项)考试题库资料(含答案).pdf
- 国家科技创新政策汇编 202305.pdf
- 东华大学819有机化学2018年考研真题.pdf
- 精品推荐企业财务制度通用版汇总.docx
- 2016年东华大学硕士研究生入学考试819有机化学考研真题.pdf
文档评论(0)