外文翻译基于PAC实时人脸检测和跟踪方法.docVIP

外文翻译基于PAC实时人脸检测和跟踪方法.doc

  1. 1、本文档共14页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
外文翻译基于PAC实时人脸检测和跟踪方法

译文一 基于PAC的实时人脸检测和跟踪方法 摘要: 这篇文章提出了复杂背景条件下,实现实时人脸检测和跟踪的一种方法。这种方法是以主要成分分析技术为基础的。为了实现人脸的检测,首先,我们要用一个肤色模型和一些动作信息(如:姿势、手势、眼色)。然后,使用PAC技术检测这些被检验的区域,从而判定人脸真正的位置。而人脸跟踪基于欧几里德(Euclidian)距离的,其中欧几里德距离在位于以前被跟踪的人脸和最近被检测的人脸之间的特征空间中。用于人脸跟踪的摄像控制器以这样的方法工作:利用平衡/(pan/tilt)平台,把被检测的人脸区域控制在屏幕的中央。这个方法还可以扩展到其他的系统中去,例如电信会议、入侵者检查系统等等。 1.引言 视频信号处理有许多应用,例如鉴于通讯可视化的电信会议,为残疾人服务的唇读系统。在上面提到的许多系统中,人脸的检测喝跟踪视必不可缺的组成部分。在本文中,涉及到一些实时的人脸区域跟踪[1-3]。一般来说,根据跟踪角度的不同,可以把跟踪方法分为两类。有一部分人把人脸跟踪分为基于识别的跟踪喝基于动作的跟踪,而其他一部分人则把人脸跟踪分为基于边缘的跟踪和基于区域的跟踪[4]。 基于识别的跟踪是真正地以对象识别技术为基础的,而跟踪系统的性能是受到识别方法的效率的限制。基于动作的跟踪是依赖于动作检测技术,且该技术可以被分成视频流(optical flow)的(检测)方法和动作—能量(motion-energy)的(检测)方法。 基于边缘的(跟踪)方法用于跟踪一幅图像序列的边缘,而这些边缘通常是主要对象的边界线。然而,因为被跟踪的对象必须在色彩和光照条件下显示出明显的边缘变化,所以这些方法会遭遇到彩色和光照的变化。此外,当一幅图像的背景有很明显的边缘时,(跟踪方法)很难提供可靠的(跟踪)结果。当前很多的文献都涉及到的这类方法时源于Kass et al.在蛇形汇率波动[5]的成就。因为视频情景是从包含了多种多样噪音的实时摄像机中获得的,因此许多系统很难得到可靠的人脸跟踪结果。许多最新的人脸跟踪的研究都遇到了最在背景噪音的问题,且研究都倾向于跟踪未经证实的人脸,例如臂和手。 在本文中,我们提出了一种基于PCA的实时人脸检测和跟踪方法,该方法是利用一个如图1所示的活动摄像机来检测和识别人脸的。这种方法由两大步骤构 成:人脸检测和人脸跟踪。利用两副连续的帧,首先检验人脸的候选区域,并利用PCA技术来判定真正的人脸区域。然后,利用特征技术(eigen-technique) 跟踪被证实的人脸。 2.人脸检测 在这一部分中,将介绍本文提及到的方法中的用于检测人脸的技术。为了改进人脸检测的精确性,我们把诸如肤色模型[1,6]和PCA[7,8]这些已经发表的技术结合起来。 2.1肤色分类 检测肤色像素提供了一种检测和跟踪人脸的可靠方法。因为通过许多视频摄像机得到的一幅RGB图像不仅包含色彩还包含亮度,所以这个色彩空间不是检测肤色像素[1,6]的最佳色彩图像。通过亮度区分一个彩色像素的三个成分,可以移动亮度。人脸的色彩分布是在一个小的彩色的色彩空间中成群的,且可以通过一个2维的高斯分部来近似。因此,通过一个2维高斯模型可以近似这个肤色模型,其中平均值和变化如下: m=(,) 其中=,= (1) = (2) 一旦建好了肤色模型,一个定位人脸的简单方法是匹配输入图像来寻找图像中人脸的色彩群。原始图像的每一个像素被转变为彩色的色彩空间,然后与该肤色模型的分布比较。 2.2动作检测 虽然肤色在特征的应用种非常广泛,但是当肤色同时出现在背景区域和人的皮肤区域时,肤色就不适合于人脸检测了。利用动作信息可以有效地去除这个缺点。为了精确,在肤色分类后,仅考虑包含动作的肤色区域。结果,结合肤色模型的动作信息导出了一幅包含情景(人脸区域)和背景(非人脸区域)的二进制图像。这幅二进制图像定义为 ,其中It(x,y) 和It-1(x,y)分别是当前帧和前面那帧中像素(x,y)的亮度。St是当前帧中肤色像素的集合,(斯坦)t是利用适当的阈限技术计算出的阈限值[9]。作为一个加速处理的过程,我们利用形态学(上)的操作(morpholoical operations)和连接成分分析,简化了图像Mt。 2.3利用PCA检验人脸 因为有许多移动的对象,所以按序跟踪人脸的主要部分是很困难的。此外,还需要检验这个移动的对象是人脸还是非人脸。我们使用特征空间中候选区域的分量向量来为人脸检验问题服务。为了减少该特征空间的维度,我们把N维的候选人脸图像投影到较低维度的特征空间,我们称之为特征空间或人脸空间[7,8]。在特征空间中,每个特征说明了人

文档评论(0)

bokegood + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档