概率统计理.doc

  1. 1、本文档共3页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
概率统计理

1某射手每次射击击中目标的概率是,且各次射击的结果互不影响。 (Ⅰ)假设这名射手射击5次,求恰有2次击中目标的概率 (Ⅱ)假设这名射手射击5次,求有3次连续击中目标。另外2次未击中目标的概率; (Ⅲ)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记为射手射击3次后的总的分数,求的分布列。 2在10件产品中,有3件一等品,4件二等品,3件三等品。从这10件产品中任取3件,求: (I) 取出的3件产品中一等品件数X的分布列和数学期望; (II) 取出的3件产品中一等品件数多于二等品件数的概率。 3甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率为. (Ⅰ)求乙投球的命中率; (Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望. 4已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球. (Ⅰ)求取出的4个球均为黑球的概率; (Ⅱ)求取出的4个球中恰有1个红球的概率; (Ⅲ)设为取出的4个球中红球的个数,求的分布列和数学期望. 5某射手进行射击训练,假设每次射击击中目标的概率为,且各次射击的结果互不影响。 (1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答); (2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答); (3)设随机变量表示射手第3次击中目标时已射击的次数,求的分布列. 6 投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审, 审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录 用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3. (I)求投到该杂志的1篇稿件被录用的概率; (II)记表示投到该杂志的4篇稿件中被录用的篇数的分布列及期望. 表示走出迷宫所需的时间。 求的分布列; 求的数学期望。 8在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起,若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,……6),求: (I)甲、乙两单位的演出序号至少有一个为奇数的概率; (II)甲、乙两单位之间的演出单位个数的分布列与期望。 9 某同学参加3门课程的考试。假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为,(>),且不同课程是否取得优秀成绩相互独立。记ξ为该生取得优秀成绩的课程数,其分布列为 ξ 0 1 2 3 (Ⅰ)求该生至少有1门课程取得优秀成绩的概率; (Ⅱ)求,的值; (Ⅲ)求数学期望ξ。 10某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料。 (Ⅰ)求甲中奖且乙、丙都没有中奖的概率; (Ⅱ)求中奖人数ξ的分布列及数学期望Eξ. 11在这个自然数中,任取个数. (I)求这个数中恰有个是偶数的概率; (II)设为这个数中两数相邻的组数(例如:若取出的数为,则有两组相邻的数和,此时的值是).求随机变量的分布列及其数学期望. ,遇到红灯时停留的时间都是2min. (Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; (Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望. 13在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3 分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第 三次,某同学在A处的命中率q为0.25,在B处的命中率为q,该同学选择先在A 处投一球,以后都在B处投,用表示该同学投篮训练结束后所得的总分,其分布列 为 0 2 3 4 5 p 0.03 P1 P2 P3 P4 (1)求q的值; (2)求随机变量的数学期望E; (3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。 14 为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.、、,现在3名工人独立地从中任选一

文档评论(0)

cgtk187 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档