联立方程估计与 及模拟.ppt

  1. 1、本文档共292页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
联立方程估计与 及模拟.ppt

第十二章 联立方程模型的估计与模拟 ; 经济系统并没有严格的空间概念。国民经济是一个系统,一个地区的经济也是一个系统,甚至某一项经济活动也是一个系统。例如我们进行商品购买决策,由于存在收入或预算的制约,在决定是否购买某一种商品时,必须考虑到对其他商品的需求与其他商品的价格,这样,不同商品的需求量之间是互相影响、互为因果的。那么,商品购买决策就是一个经济系统。 联立方程系统就是一组包含未知数的方程组。利用一些多元方法可以对系统进行估计,这些方法考虑到了方程之间的相互依存关系。 ;12.1 联立方程系统概述 本章将包含一组未知参数,并且变量之间存在着反馈关系的联立方程组称为“系统”(systems) ,可以利用12.2节介绍的多种估计方法求解未知参数。本章的12.3节中将一组描述内生变量的已知方程组称为“模型”(model) ,给定了联立方程模型中外生变量的信息就可以使用联立方程模型对内生变量进行模拟、评价和预测。 一般的联立方程系统形式是 t =1, 2, ?, T (12.1.1) 其中:yt 是内生变量向量,zt 是外生变量向量,ut 是一个可能存在序列相关的扰动项向量,T 表示样本容量。估计的任务是寻找未知参数向量 ? 的估计量。;例12.1 克莱因联立方程系统 ; KleinⅠ模型: (消费) (投资) (私人工资) (均衡需求) (企业利润) (资本存量) (12.1.2) 此模型包含3个行为方程,1个定义方程,2个会计方程。式中变量: 6个内生变量: 4个外生变量: Y:收入(GDP中除去净出口); G:政府非工资支出; CS:消费; Wg :政府工资; I:私人国内总投资; T:间接税收; Wp :私人工资; Trend:时间趋势; P:企业利润; K:资本存量 ; 在联立方程模型中,对于其中每个方程,其变量仍然有被解释变量与解释变量之分。但是对于模型系统而言,已经不能用被解释变量与解释变量来划分变量。对于同??个变量,在这个方程中作为被解释变量,在另一个方程中则可能作为解释变量。对于联立方程系统而言,将变量分为内生变量和外生变量两大类,外生变量与滞后内生变量又被统称为前定变量。; 内生变量是具有某种概率分布的随机变量,它的参数是联立方程系统估计的元素,内生变量是由模型系统决定的,同时也对模型系统产生影响。内生变量一般都是经济变量。外生变量一般是确定性变量。外生变量影响系统,但本身不受系统的影响。外生变量一般是经济变量、条件变量、政策变量、虚拟变量。滞后内生变量是联立方程模型中重要的不可缺少的一部分变量,用以反映经济系统的动态性与连续性。在例12.1中,CS, I, Wp , Y, P, K 为内生变量,外生变量 G, Wg , T , Trend 和滞后内生变量一起构成前定变量。 ;§12.2 联立方程系统的估计方法 EViews提供了估计系统参数的两类方法。一类方法是单方程估计方法,使用前面讲过的单方程法对系统中的每个方程分别进行估计。第二类方法是系统估计方法,同时估计系统方程中的所有参数,这种同步方法允许对相关方程的系数进行约束并且使用能解决不同方程残差相关的方法。 虽然利用系统方法估计参数具有很多优点,但是这种方法也要付出相应的代价。最重要的是在系统中如果错误指定了系统中的某个方程,使用单方程估计方法估计参数时,如果某个被估计方程的参数估计值很差,只影响这个方程;但如果使用系统估计方法,这个错误指定的方程中较差的参数估计就会“传播”给系统中的其它方程。; 这里,应该区分方程组系统和模型的差别。模型是一组描述内生变量关系的已知方程组,给定了模型中外生变量的信息就可以使用模型对内生变量求值。 系统和模型经常十分紧密地一起使用,估计了方程组系统中的参数后可以创建一个模型,然后对系统中的内生变量进行模拟和预测。 ;建立和说明联立方程系统 为了估计联立方程系统参数,首先应建立一个系统对象并说明

文档评论(0)

yuzongxu123 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档