- 1、本文档共54页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第十一章 广义积分与含参变量的积分 复习知识.ppt
第十一章 广义积分与含参变量的积分;§1 广义积分;§1 广义积分;§1 广义积分;我们得出结论:
当p ?1时,;1.无穷积分;1.无穷积分;(5)无穷积分收敛的判别法;(5)无穷积分收敛的判别法;(5)无穷积分收敛的判别法;(5)无穷积分收敛的判别法;(5)无穷积分收敛的判别法;2. 瑕积分;2. 瑕积分;;2. 瑕积分;2. 瑕积分;2. 瑕积分;2. 瑕积分收敛的判别法;2. 瑕积分收敛的判别法;2. 瑕积分收敛的判别法;2. 瑕积分收敛的判别法;§2 含参变量的正常积分;§2 含参变量的正常积分;§2 含参变量的正常积分;§2 含参变量的正常积分;§2 含参变量的正常积分;§3 含参变量的广义积分;§3 含参变量的广义积分;§3 含参变量的广义积分;§3 含参变量的广义积分;§3 含参变量的广义积分;(6)无穷积分一致收敛的M判别法;(7)无穷积分一致收敛的狄利克莱判别法;(8)无穷积分一致收敛的阿贝尔判别法;(9)含参变量无穷积分的连续性和可积性;(10)含参变量无穷积分的可微性;(11)两个累次无穷积分可交换积分次序的充分条件;定理6‘:设函数f(x,y)在区域[a,+∞) ×[c, +∞)上二元连续。又 分别关于y及x在任意有穷区间[c+ε,d]及[a+ε,b]上一致收敛,且
中至少有一个存在,则;2. 含参变量的瑕积分;2. 含参变量的瑕积分;2. 含参变量的瑕积分;(4)含参变量的瑕积分一致收敛的M判别法;2.含参变量的瑕积分;2.含参变量的瑕积分;3. Γ函数与Β函数;3. Γ函数与Β函数;3. Γ函数与Β函数;;;3. Γ函数与Β函数;3. Γ函数与Β函数
文档评论(0)