数据挖掘--分类课件.pptx

  1. 1、本文档共106页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
数据挖掘--分类课件

第三章 分类方法 内容提要分类的基本概念与步骤 基于距离的分类算法 决策树分类方法 贝叶斯分类 实值预测 与分类有关的问题 分类的流程 动物种类体型翅膀数量脚的只数是否产蛋是否有毛类别狗中04否是爬行动物猪大04否是爬行动物牛大04否是爬行动物麻雀小22是是鸟类天鹅中22是是鸟类大雁中22是是鸟类动物A大02是无?动物B中22否是?根据现有的知识,我们得到了一些关于爬行动物和鸟类的信息,我们能否对新发现的物种,比如动物A,动物B进行分类?分类的流程 动物种类体型翅膀数量脚的只数是否产蛋是否有毛类别狗中04否是爬行动物猪大04否是爬行动物牛大04否是爬行动物麻雀小22是是鸟类天鹅中22是是鸟类大雁中22是是鸟类步骤一:将样本转化为等维的数据特征(特征提取)。所有样本必须具有相同数量的特征兼顾特征的全面性和独立性分类的流程 动物种类体型翅膀数量脚的只数是否产蛋是否有毛类别狗中04否是爬行动物猪大04否是爬行动物牛大04否是爬行动物麻雀小22是是鸟类天鹅中22是是鸟类大雁中22是是鸟类步骤二:选择与类别相关的特征(特征选择)。比如,绿色代表与类别非常相关,黑色代表部分相关,灰色代表完全无关分类的流程 步骤三:建立分类模型或分类器(分类)。分类器通常可以看作一个函数,它把特征映射到类的空间上如何避免过度训练 分类也称为有监督学习(supervised learning),与之相对于的是无监督学习(unsupervised learning),比如聚类。分类与聚类的最大区别在于,分类数据中的一部分的类别是已知的,而聚类数据的类别未知。建立分类模型需要学习一部分已知数据,如果训练时间过长,或者预测模型参数太多而样本较少,将导致过度训练(overfitting)。如何避免过度训练 避免过度训练最重要一点是,模型的参数量应远小于样本的数量。应建立训练集(training set)和测试集(test set)。训练集应用于建立分类模型测试集应用于评估分类模型K折叠交叉验证(K-fold cross validation):将初始采样分割成K个子样本(S1,S2,...,Sk),取K-1个做训练集,另外一个做测试集。交叉验证重复K次,每个子样本都作为测试集一次,平均K次的结果,最终得到一个单一估测。分类模型的评估 真阳性(True Positive): 实际为阳性 预测为阳性真阴性(True Negative):实际为阴性 预测为阴性假阳性(False Positive): 实际为阴性 预测为阳性假阴性(False Negative):实际为阳性 预测为阴性预测是否正确 预测结果比如预测未知动物是鸟类还是爬行动物,阳性代表爬行动物,阴性代表非爬行动物,请大家阐述 TP=10,TN=8,FN=3,FP=2是什么意义分类模型的评估 灵敏度(Sensitivity): TP/(TP+FN)也称为查全率(Recall)数据集共有13只爬行动物,其中10只被正确预测为爬行动物,灵敏度为10/13特异度(Specificity): TN/(TN+FP)数据集有10只非爬行动物,其中8只被预测为非爬行动物,特异度为8/10精度(Precision): TP/(TP+FP)分类器预测了12只动物为爬行动物,其中10只确实是爬行动物,精度为10/12准确率(Accuracy): (TP+TN)/(TP+TN+FN+FP)数据集包含23只动物,其中18只预测为正确的分类,准确率为18/23分类模型的评估 对于非平衡(unblanced)的数据集,以上指标并不能很好的评估预测结果。非平衡的数据集是指阳性数据在整个数据集中的比例很小。比如,数据集包含10只爬行动物,990只爬行动物,此时,是否预测正确爬行动物对准确率影响不大。更平衡的评估标准包括马修斯相关性系数(Matthews correlation coefficient)和ROC曲线。马修斯相关性系数定义为分类模型的评估 ROC曲线通过描述真阳性率(TPR)和假阳性率(FPR)来实现,其中TPR=TP/(TP+FN), FPR=FP/(FP+TN)。大部分分类器都输出一个实数值(可以看作概率),通过变换阈值可以得到多组TPR与FPR的值。第三章 分类方法 内容提要分类的基本概念与步骤 基于距离的分类算法 决策树分类方法 贝叶斯分类 实值预测 与分类有关的问题 基于距离的分类算法的思路定义4-2 给定一个数据库 D={t1,t2,…,tn}和一组类C={C1,…,Cm}。假定每个元组包括一些数值型的属性值:ti={ti1,ti2,…,tik},每个类也包含数值性属性值:Cj={Cj1,Cj2,…,Cjk},则分类问题是

文档评论(0)

153****9595 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档