现代密码学理论与实践之五48.ppt

  1. 1、本文档共46页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
现代密码学理论与实践之五48

现代密码学理论与实践之五 并 行 计 算 中国科学技术大学计算机科学与技术系 国家高性能计算中心(合肥) 2003年9月 第二篇 并行算法的设计 第四章 并行算法的设计基础 第五章 并行算法的一般设计方法 第六章 并行算法的基本设计技术 第七章 并行算法的一般设计过程 第六章 并行算法的基本设计技术 6.1 划分设计技术 6.2 分治设计技术 6.3 平衡树设计技术 6.4 倍增设计技术 6.5 流水线设计技术 6.1 划分设计技术 6.1.1 均匀划分技术 6.1.2 方根划分技术 6.1.3 对数划分技术 6.1.4 功能划分技术 均匀划分技术 划分方法 n个元素A[1..n]分成p组,每组A[(i-1)n/p+1..in/p],i=1~p 示例:MIMD-SM模型上的PSRS排序 begin (1)均匀划分:将n个元素A[1..n]均匀划分成p段,每个pi处理 A[(i-1)n/p+1..in/p] (2)局部排序:pi调用串行排序算法对A[(i-1)n/p+1..in/p]排序 (3)选取样本:pi从其有序子序列A[(i-1)n/p+1..in/p]中选取p个样本元素 (4)样本排序:用一台处理器对p2个样本元素进行串行排序 (5)选择主元:用一台处理器从排好序的样本序列中选取p-1个主元,并 播送给其他pi (6)主元划分:pi按主元将有序段A[(i-1)n/p+1..in/p]划分成p段 (7)全局交换:各处理器将其有序段按段号交换到对应的处理器中 (8)归并排序:各处理器对接收到的元素进行归并排序 end. 均匀划分技术 例6.1 PSRS排序过程。N=27,p=3,PSRS排序如下: 6.1 划分设计技术 6.1.1 均匀划分技术 6.1.2 方根划分技术 6.1.3 对数划分技术 6.1.4 功能划分技术 方根划分技术 划分方法 n个元素A[1..n]分成A[(i-1)n^(1/2)+1..in^(1/2)],i=1~n^(1/2) 示例:SIMD-CREW模型上的 Valiant归并(1975年发表) //有序组A[1..p]、B[1..q], (假设p=q), 处理器数 begin (1)方根划分: A,B分别按 ; (2)段间比较: A划分元与B划分元比较(至多 对), 确定A划分元应插入B中的区段; (3)段内比较: A划分元与B相应段内元素进行比较,并插入适当的位置; (4)递归归并: B按插入的A划分元重新分段,与A相应段(A除去原划分元) 构成了成对的段组,对每对段组递归执行(1)~(3),直至A 组为0时,递归结束; 各组仍按 分配处理器; end. 方根划分技术 方根划分技术 6.1 划分设计技术 6.1.1 均匀划分技术 6.1.2 方根划分技术 6.1.3 对数划分技术 6.1.4 功能划分技术 对数划分技术 划分方法 n个元素A[1..n]分成A[(i-1)logn+1..ilogn],i=1~n/logn 示例:PRAM-CREW上的对数划分并行归并排序 (1)归并过程: 设有序组A[1..n]和B[1..m] j[i]=rank(bilogm:A)为bilogm在A中的位序,即A中小于等于bilogm的元素个数 (2)例:A=(4,6,7,10,12,15,18,20), B=(3,9,16,21) n=8, m=4 =logm=log4=2 = j[1]=rank(blogm:A)=rank(b2:A)=rank(9:A)=3, j[2]=…=8

文档评论(0)

rabbitco + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8126037011000004

1亿VIP精品文档

相关文档