- 1、本文档共16页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
A Bayesian approach to state and parameter estimation …:状态和参数估计的贝叶斯方法…
A Bayesian approach to state and parameter estimation in a Phytoplankton-Zooplankton model.
Emlyn Jones1*, John Parslow1 and Lawrence Murray2
1 CSIRO Marine and Atmospheric Research, Castray Esplanade, Hobart, Tasmania.
2 CSIRO Mathematical and Information Sciences, Floreat, Western Australia.
*Corresponding Author: emlyn.jones@csiro.au
Abstract:
Complex marine biogeochemical (BGC) models are now being used to inform management decisions at a variety of scales, from local coastal management issues through to the global effects of climate change. A majority of BGC models are still deterministic in nature with model tuning and calibration performed in a heuristic manner. This method does not allow for a quantitative estimate of model or parameter uncertainty. If these models are reformulated in a physical-statistical framework, using a stochastic process model, formal state and parameter estimation routines can be implemented, yielding quantitative estimates of model uncertainty. We have performed twin experiments using an idealised stochastic-dynamic non-linear phytoplankton-zooplankton model to trial two Markov Chain Monte Carlo (MCMC) Algorithms. The first uses a Particle Filter (PF) with a Metropolis-Hastings (MH) update step for state-estimation embedded within a MH MCMC for hyper-parameter estimation; we have named this approach MH-PF-MH. The second approach uses Gibbs Sampling for state estimation and MH MCMC over hyper-parameters; referred to as MH-Gibbs. Both algorithms performed well in the twin-experiments, allowing both state and parameter estimation. The hybrid MH-Gibbs is more efficient than the MH-PF-MH algorithm, forming a reliable posterior sample with up to 99.9% fewer model trajectories. However, the MH-PF-MH algorithm is expected to be more flexible in its implementation.
Introduction:
Within the last 15 years there have been significant advances in statistical techniques available for data assimilation (DA), largely driven by a combination of the
文档评论(0)