- 1、本文档共30页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
吴喜之 统计学 从数据到结论(变量间的关系)
直到现在我们所涉及的仅仅是对一些互相没有关系的变量的描述。但是现实世界的问题都是相互联系的。不讨论变量之间的关系,就无从谈起任何有深度的应用;而没有应用,前面讲过的那些基本概念就仅仅是摆设而已。 变量间的关系 人们每时每刻都在关心事物之间的关系。 比如,职业种类和收入之间的关系、政府投入和经济增长之间的关系、广告投入和经济效益之间的关系、治疗手段和治愈率之间的关系等等。 这些都是二元的关系。 还有更复杂的诸多变量之间的相互关系, 比如企业的固定资产、流动资产、预算分配、管理模式、生产率、债务和利润等诸因素的关系是不能用简单的一些二元关系所描述的。 例1广告投入和销售之间的关系(数据ads.sav) 这是什么关系? 这两个变量是否有关系?显然,它们有关系;这从散点图就很容易看出。基本上销售额是随着广告投入的递增而递增。 如果有关系,它们的关系是否显著?这也可以从散点图得到。当广告投入在6万元以下,销售额增长很快;但大于这个投入时,销售额增长就不明显了。因此,这两个变量的关系是由强变弱。 这些关系是什么关系,是否可以用数学模型来描述?本例看上去是可以拟合一个回归模型(后面会介绍),但绝不是线性的(用一条直线可以描述的)。具体细节需要进一步的分析 这是什么关系? 这个关系是否带有普遍性?也就是说,仅仅这一个样本有这样的关系,还是对于其他企业也有类似的规律。这里的数据还不足以回答这个问题。可能需要考虑更多的变量和收集更多的数据。一般来说,人们希望能够从一些特殊的样本,得到普遍的结论,以利于预测。 这个关系是不是因果关系?在本问题中,看来有因果关系。这类似于一种试验;而试验时是容易找到因果关系的。但是,一般来说,变量之间有关系但绝不意味着存在因果关系。 定性变量间的关系(关于某项政策调查所得结果:table7.sav) 定性和定量变量间的混和关系 定性和定量变量间的混和关系 相关和回归分析 顾客对商品和服务的反映对于商家是至关重要的,但是仅仅有满意顾客的比例是不够的,商家希望了解什么是影响顾客观点的因素以及这些因素是如何起作用的。 一般来说,统计可以根据目前所拥有的信息(数据)建立人们所关心的变量和其他有关变量的关系(称为模型)。 假如用Y表示感兴趣的变量,用X表示其他可能有关的变量(可能是若干变量组成的向量)。则所需要的是建立一个函数关系Y=f(X)。这里Y称为因变量或响应变量,而X称为自变量或解释变量或协变量。 建立这种关系的过程就叫做回归。 相关和回归分析 一旦建立了回归模型 可以对各种变量的关系有了进一步的定量理解 还可以利用该模型(函数)通过自变量对因变量做预测。 这里所说的预测,是用已知的自变量的值通过模型对未知的因变量值进行估计;它并不一定涉及时间先后的概念。 例1 有50个从初中升到高中的学生.为了比较初三的成绩是否和高中的成绩相关,得到了他们在初三和高一的各科平均成绩(数据:highschool.sav) 问题是 怎么判断这两个变量是否相关? 如何相关? 相关的度量是什么? 进一步的问题是能否以初三成绩为自变量,高一成绩为因变量来建立一个回归模型以描述这样的关系,或用于预测。 还有定性变量 该数据中,除了初三和高一的成绩之外,还有一个定性变量 它是学生在高一时的家庭收入状况;它有三个水平:低、中、高,分别在数据中用1、2、3表示。 还有定性变量 下面是对三种收入对高一成绩和高一与初三成绩差的盒形图 例2 这是200个不同年龄和性别的人对某项服务产品的认可的数据(logi.sav). 年龄是连续变量,性别是有男和女(分别用1和0表示)两个水平的定性变量,而(定性)变量“观点”则为包含认可(用1表示)和不认可(用0表示)两个水平的定性变量。 两个定量变量的相关 如果两个定量变量没有关系,就谈不上建立模型或进行回归。 但怎样才能确定两个变量有没有关系呢? 最简单的办法就是画出它们的散点图。 四组数据(每个有两个变量的样本)的散点图 几种相关的度量 Pearson相关系数,又叫相关系数或线性相关系数。它一般用字母r表示. Kendall t 相关系数(Kendall’s t)这里的度量原理是把所有的样本点配对,看每一对中的x和y是否都增加来判断总体模式. Spearman 秩相关系数,它和Pearson相关系数定义有些类似,只不过在定义中把点的坐标换成各自样本的秩. 它们各自都有以不相关为零假设的检验,即p-值小则相关.但各自的相关含义不尽相同. 现在再来看例1的数据(highschool.sav).关于初三和高一成绩的相关系数的结果是Pearson相关系数,Kendall t 和Spearman 秩相关系数分别为0.795, 0.595和0.758。 例子 x=-20:20 y=x^2
文档评论(0)