- 1、本文档共20页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
2008、2009高考题选编答案 椭圆
2008、2009高考题选编
1.(2008北京卷理19)已知菱形的顶点在椭圆上,对角线所在直线的斜率为1.
(Ⅰ)当直线过点时,求直线的方程;
(Ⅱ)当时,求菱形面积的最大值.
解:(Ⅰ)由题意得直线的方程为.
因为四边形为菱形,所以.
于是可设直线的方程为.
由得.
因为在椭圆上,所以,解得.
设两点坐标分别为,
则,,,.
所以.所以的中点坐标为.
由四边形为菱形可知,点在直线上,
所以,解得.所以直线的方程为,即.
(Ⅱ)因为四边形为菱形,且,
所以.所以菱形的面积.
由(Ⅰ)可得,
所以.
所以当时,菱形的面积取得最大值
2.(2008福建卷理21)如图、椭圆的一个焦点是F(1,0),O为坐标原点.
(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;
(Ⅱ)设过点F的直线l交椭圆于A、B两点.若直线l绕点F任意转动,值有,求a的取值范围.
解:(Ⅰ)设M,N为短轴的两个三等分点,因为△MNF为正三角形, 所以,
因此,椭圆方程为
(Ⅱ) 设
(ⅰ)当直线 AB与x轴重合时,
(ⅱ)当直线AB不与x轴重合时,
设直线AB的方程为:
整理得
所以
因为恒有,所以AOB恒为钝角.
即恒成立.
又,所以对恒成立,
即对恒成立,当时,最小值为0,
所以, ,
,即,
解得或(舍去),即,
综合(i)(ii),a的取值范围为.
3.(2008辽宁卷理20)在直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为,直线与C交于A,B两点.
(Ⅰ)写出C的方程;
(Ⅱ)若,求k的值;
(Ⅲ)若点A在第一象限,证明:当k0时,恒有||||.
解析:(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点,长半轴为2的椭圆.它的短半轴,
故曲线C的方程为. 3分
(Ⅱ)设,其坐标满足
消去y并整理得,
故. 5分
若,即.
而,
于是,
化简得,所以. 8分
(Ⅲ)
.
因为A在第一象限,故.由知,从而.又,
故,
即在题设条件下,恒有. 12分
4.(2008全国Ⅱ卷理21文22)设椭圆中心在坐标原点,是它的两个顶点,直线与AB相交于点D,与椭圆相交于E、F两点.
(Ⅰ)若,求的值;
(Ⅱ)求四边形面积的最大值.
如图,设,其中,
且满足方程,
故.①
由知,得;
由在上知,得.
所以,化简得,
解得或. 6分
(Ⅱ)解法一:根据点到直线的距离公式和①式知,点到的距离分别为,
. 9分
又,所以四边形的面积为
,
当,即当时,上式取等号.所以的最大值为. 12分
解法二:由题设,,.设,,由①得,,
故四边形的面积为
9分
,
当时,上式取等号.所以的最大值为. 12分
5.(2009山东卷理)(本小题满分14分)
设椭圆E: (a,b0)过M(2,) ,N(,1)两点,O为坐标原点,
(I)求椭圆E的方程;
(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。
解:(1)因为椭圆E: (a,b0)过M(2,) ,N(,1)两点,
所以解得所以椭圆E的方程为
(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为解方程组得,即, w.w.w.k.s.5.u.c.o.m
则△=,即
,要使,需使,即,所以,所以又,所以,所以,即或,因为直线为圆心在原点的圆的一条切线,所以圆的半径为,,,所求的圆为,此时圆的切线都满足或,而当切线的斜率不存在时切线为与椭圆的两个交点为或满足,综上, 存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.
因为,
所以,
,
①当时
因为所以,
所以,
所以当且仅当时取”=”. w.w.w.k.s.5.u.c.o.m
当时,.
当AB的斜率不存在时, 两个交点为或,所以此时,
综上, |AB |的取值范围为即:
6.(2009全国卷Ⅱ文、理)
已知椭圆的离心率为,过右焦点F的直线与相交于、两点,当的斜率为1时,坐标原点到的距离为
(I)求,的值;
(II)上是否存在点P,使得当绕F转到某一位置时,有成立?
若存在,求出所有的P的坐标与的方程;若不存在,说明理由。
解:(I)设,直线,由坐标原点到的距离为
则,解得 .又.
(II)由(I)知椭圆的方程为.设、
由题意知的斜率为一定不为0,故不妨设
代入椭圆的方程中整理得,显然。
由韦达定理
文档评论(0)