基因芯片流程-资料中心-生物在线.ppt

  1. 1、本文档共88页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基因芯片结构示意图生物芯片的制作步骤简介基因芯片探针固相原位合成技术与照相平板印刷技术激光共聚焦显微技术中科院遗传所人类基因组中心北京大学联合基因集团有限公司我国第一家批量生产基因芯片拥有近千条基因药物发明专利东南大学吴健雄实验室中科院计算所生物信息学实验室上海生科院我国基因芯片的研究现状目前我国尚未有较成型的基因芯片问世但据悉已有几家单位组织人力物力从事该技术的研制工作并取得了一些可喜的进展标志着我国相关学科与技术正在走向成熟涉及领域生命科学计算机科学精密机械科学生物芯片分类根据用途还可以把生

基因芯片结构示意图 生物芯片的制作步骤 简介 基因芯片 探针固相原位合成技术与照相平板印刷技术 激光共聚焦显微技术 中科院遗传所人类基因组中心 北京大学 联合基因集团有限公司 我国第一家批量生产基因 芯片 拥有近2千条基因药物发明专利 东南大学吴健雄实验室 中科院计算所生物信息学实验室 上海生科院 我国基因芯片的研究现状 目前,我国尚未有较成型的基因芯片问世,但据悉已有几家单位组织人力物力从事该技术的研制工作,并取得了一些可喜的进展。标志着我国相关学科与技术正在走向成熟。 涉及领域:生命科学、计算机科学、精密机械科学 生物芯片分类 根据用途还可以把生物芯片分为两类:信息生物芯片(information-biochip)和功能生物芯片(function-biochip)。 基因芯片(gene chip)的原理 基因芯片的测序原理是杂交测序法,即通过与一组已知序列的核酸探针杂交进行核酸序列测定的方法。在一块基片表面固定了序列已知的八核苷酸的探针。当溶液中带有荧光标记的核酸序列TATGCAATCTAG,与基因芯片上对应位置的核酸探针产生互补匹配时,通过确定荧光强度最强的探针位置 ,获得一组序列完全互补的探针序列。据此可重组出靶序列的核酸。 基因芯片又称DNA微阵列(DNAmicroarray) 三种主要类型: 1)固定在聚合物基片(尼龙膜、硝酸纤维膜等)表面上的核酸探针或cDNA片段——通过同位素标记的靶基因与其杂交,通过放射显影技术进行检测 2)用点样法固定在玻璃板上的DNA探针阵列——通过与荧光标记的靶基因杂交进行检测 3)在玻璃等硬质表面上直接合成的寡核苷酸探针阵列——与荧光标记的靶基因杂交进行检测 主要类型 多种方法将寡核苷酸或短肽 固定到固相支持物上 原位合成(in situ synthesis) 合成点样 支持物:玻璃片、硅片、聚丙烯膜、硝酸纤维素膜、尼龙膜等 基因芯片 /DNA 微阵列 Gene Chip /DNA Microarray 2.基因芯片的基本原理分析 任何线状的单链DNA或RNA序列均可被分解为一个序列固定、错落而重叠的寡核苷酸,又称亚序列(subsequence)。例如可把寡核苷酸序列TTAGCTCATATG分解成5个8 nt亚序列: 这5个亚序列依次错开一个碱基而重叠7个碱基。 亚序列中A、T、C、G 4个碱基自由组合而形成的所有可能的序列共有65536种。 假如只考虑完全互补的杂交,那么48个8 nt亚序列探针中,仅有上述5个能同靶DNA杂交。 可以用人工合成的已知序列的所有可能的n体寡核苷酸探针与一个未知的荧光标记DNA/RNA序列杂交,通过对杂交荧光信号检测,检出所有能与靶DNA杂交的寡核苷酸,从而推出靶DNA中的所有8 nt亚序列,最后由计算机对大量荧光信号的谱型(pattern)数据进行分析,重构靶DNA 的互补寡核苷酸序列。 原理 -- 通过杂交检测信息 二、 基因芯片基本操作流程 制备总RNA→ mRNA经RT--PCR用Cy3(正常对照组)和Cy5(实验组)荧光标记目的基因,得到cDNA 探针→ 混合标记探针→与表达谱芯片上核苷酸片段(或基因)杂交→扫描→分析杂交结果→结论 载体+寡核苷酸-探针分子+荧光染料-点样仪-扫描仪-计算机+专业软件 基因芯片流程(一) 1. 实验设计 2. 样品制备(指mRNA或总RNA样品,包括对照组和实验组。将mRNA或总RNA分别进行逆转录生成cDNA,然后将对照组和实验组cDNA分别标记Cy3和Cy5荧光信号) 3. 芯片制备(寡核苷酸探针或 cDNA探针,包括PCR,纯化,点样等步骤) 基因芯片流程(二) 4. 芯片杂交(将用Cy3和Cy5荧光标记的对照组和实验组的cDNA 等量混合,与芯片进行杂交) 5. 芯片扫描(采用激光扫描仪,分别用532nm和635nm波长激光扫描芯片,对于每张芯片,得到Cy3和Cy5通道两幅图象) 基因芯片流程(三) 6.. 图象处理(采用专门软件,对图象进行分析,提取每个点上的数字信号,得到原始数据表) 7. 数据校正和筛选(对Cy5或Cy3信号进行校正,消除实验或扫描等各环节因素对数据的影响,同时利用筛选规则对数据中的“坏点”,“小点”,“低信号点”进行筛选,并作标记) 基因芯片流程(四) 8. 目的基因或序列的确定(采用ratio值对差异基因进行判断,或采用统计方法如线性回归、主成分分析、调整P值算法等对差异基因进行统计推断) 9. 生物信息学分析(如cluster 算法、差异基因的同源性比对,差异基因的相关文献检索等) 微流控芯片检测仪 基因芯片的阅读分析系统 芯片扫描仪 芯片杂交盒 三、 基因芯片设计步骤 1. 基因芯片设计的一般性原则 基因芯片设计主要包括两个方面: 探针的设

文档评论(0)

jinchenl + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档