MIT网络分析工具.docx

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
MIT网络分析工具

Archived Version (frozen Nov. 2011)The code is classified by functionality as follows (121 routines total, last version Nov 6, 2011). All functions can be downloaded?here.Basic network routines (17)getNodes.m?- return the list of nodes for varying graph representations;getEdges.m?- return the list of edges for varying graph representations;numnodes.m?- number of vertices/nodes in the network;numedges.m?- number of edges/links in the network;link_density.m?- the density of links of the graph;selfloops.m?- number of selfloops, i.e. nodes connected to themselves;multiedges.m?- number of arcs (i,j) with multiple edges across them;average_degree.m?- the average degree (# links) across all nodes;num_conn_comp.m?- number of connected components (using algebraic connectivity);find_conn_comp.m?- the number of connected components in an undirected graph;giant_component.m?- extract the giant component only (undirected graph);tarjan.m?- find the strongly connected components in a directed graph;graph_complement.m?- the complement graph;graph_dual.m?- the graph dual (or line graph, adjoint graph);subgraph.m?- return the subgraph adjacency given the graph and the subgraph nodes;leaf_nodes.m?- nodes connected to only one other node;leaf_edges.m?- edges with only one adjacent edge;Diagnostics (11)issimple.m?- check whether the graph has selfloops and multiple edges;isdirected.m?- directed or undirected graph (right now uses issymmetric.m);issymmetric.m?- check whether a matrix is symmetric;isconnected.m?- check whether a graph is connected;isweighted.m?- determine whether the graph has weighted links;isregular.m?- check whether its a regular graph;iscomplete.m?- check whether the graph is complete;iseulerian.m?- find out whether its an eulerian graph;istree.m?- check whether the graph is a tree;isgraphic.m?- check whether a sequence of numbers is graphic;isbipartite.m?- check whether a graph is bipartite;Conversion routines (14)adj2adjL.m, (adjL2adj.m) - convert an adjacency matrix

文档评论(0)

xcs88858 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8130065136000003

1亿VIP精品文档

相关文档