- 1、本文档共6页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
分离常数后若干思维路径工科
分离常数后的若干思维路径
黑龙江省鸡西市一中 王荣峰
学习数学的核心是解题,而解题时应选择怎样的方法是解题者十分关注的问题,对于某些分式结构或可以转化成分式结构的题目我们经常采用分离常数的方法来求解,下面就分离常数后的若干思维路径进行总结,供参考。
1. 利用函数的单调性
例1:已知,在和的展开式中,含项的系数相等,则实数a的取值范围是()
A. B. C. D.
解:由已知得
,分离常数得
易知在上单调递减,
又0,故,选C。
评注:通过分离常数,使自变量只含在分母上,更容易判断出函数的单调性。
2. 考虑函数的奇偶性
例2:已知函数的最大值是M,最小值是N,则( )。
A. B.
C. D.
解:分离常数得
令,易知是定义在R上的奇函数,故,所以,选D。
评注:分离常数后,挖掘出为奇函数这一隐含条件是顺解该题的关键。
3. 回归定义
例3:已知,若数列为等比数列,则常数p的值为( )
A. 2 B. 3 C. 2或3 D. 不能确定
解:设
则有
分离常数得
,依据等比数列的定义知应是与n无关的常数,从而可得
或。选C。
评注:定义揭示事物的本质属性,有些问题若能通过回归定义求解往往思路清晰,过程简捷。
4. 应用重要不等式
例4:已知关于x的方程有解,试确定参数a的取值范围。
解:问题等价于方程,有解,
由*得,(),
分离常数得
当且仅当,即时等号成立
∴a的取值范围是
评注:通过分离常数,把确定参数范围的问题转化成应用重要不等式求函数值域的问题,避免了直接探求带来的繁杂运算。
5. 分类讨论
例5:设,,若对任意的a,b,c∈R都存在以,,为边的三角形,则实数k的取值范围是()
A. B.
C. D. 非上述答案
解:分离常数得,
令,易知
1. 当k≥1时,
若构成三角形的三边
则,即,解得
2. 当时,
由得
综合1,2可知实数k的取值范围是,选C。
评注:利用分类讨论思想解题的关键是做到不重、不漏。
6. 数形结合
例6:已知,关于x的方程有两个不相等的实根,求实数a的取值范围。
分析:令,结合正弦函数在[0,π]上的图象知:对任意的都对应两个x值,本题即要求给出唯一的t所对应的a的范围。
解:分离参数得
,分离常数得
,令,
依题意知,令,在平面直角坐标系中作出函数,的图象(如下图),可求得唯一自变量u对应的y的范围是y=6或,进而可知a的取值范围是或。
评注:数形结合思想是解决涉及超越方程解的个数问题的重要策略之一。
评注:对于一个可用分离常数法解决的问题,分离常数后到底采用怎样的思维路径更有效,还应凭借平时的积累,依据题目的特点,具体问题,具体分析,切不可生搬硬套。
以下题目供练习:
1. 已知数列的通项公式为,那么在数列的前100项中,最大的项和最小的项分别是()。
A. B. C. D.
2. 已知在[-z,z](z0)上的最大值和最小值分别是M,N,则有()。
A. B.
C. D.
3. 是否存在实数m使不等式对恒成立?若存在,求出m的取值范围;若不存在,说明理由。
4. 已知等差数列的首项为,公差为d,(),是否存在常数c使数列成等比数列?证明你的结论。
5. 已知数a,b0,,则函数在()上( )。
A. 单调递增 B. 单调递减
C. 不具单调性 D. 单调性与a、b的取值有关
6. 已知抛物线和以A(3,0),B(0,3)为端点的线段有公共点,试确定实数m的取值范围。
参考答案
1. 选B
2. 选C
3.
4. ①当d=0时,不存在满足条件的常数c,②当时,
5. 选A
6.
文档评论(0)