- 1、本文档共6页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
函数极值与导数(教案)关于
1.3.2 函数的极值与导数(教案)
一、教学目标
1 知识与技能
〈1〉结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件
〈2〉理解函数极值的概念,会用导数求函数的极大值与极小值
过程与方法
结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。
情感与价值
感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。
二、重点:利用导数求函数的极值
难点:函数在某点取得极值的必要条件与充分条件
三、教学基本流程
回忆函数的单调性与导数的关系,与已有知识的联系
提出问题,激发求知欲
组织学生自主探索,获得函数的极值定义
通过例题和练习,深化提高对函数的极值定义的理解
四、教学过程
〈一〉、创设情景,导入新课
1、通过上节课的学习,导数和函数单调性的关系是什么?
(提高学生回答)
2.观察图1.3.8 表示高台跳水运动员的高度h随时间t变化的函数=-4.9t2+6.5t+10的图象,回答以下问题
(1)当t=a时,高台跳水运动员距水面的高度最大,那么函数在t=a处的导数是多少呢?
(2)在点t=a附近的图象有什么特点?
(3)点t=a附近的导数符号有什么变化规律?
共同归纳: 函数h(t)在a点处h/(a)=0,在t=a的附近,当t<a时,函数单调递增, >0;当t>a时,函数单调递减, <0,即当t在a的附近从小到大经过a时, 先正后负,且连续变化,于是h/(a)=0.
3、对于这一事例是这样,对其他的连续函数是不是也有这种性质呢?
二、探索研讨
1、观察1.3.9图所表示的y=f(x)的图象,回答以下问题:
(1)函数y=f(x)在a.b点的函数值与这些点附近的函数值有什么关系?
(2) 函数y=f(x)在a.b.点的导数值是多少?
(3)在a.b点附近, y=f(x)的导数的符号分别是什么,并且有什么关系呢?
2、极值的定义:
我们把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值;
点b叫做函数y=f(x)的极大值点,f(a)叫做函数y=f(x)的极大值。
极大值点与极小值点称为极值点, 极大值与极小值称为极值.
3、通过以上探索,你能归纳出可导函数在某点x0取得极值的充要条件吗?
充要条件:f(x0)=0且点x0的左右附近的导数值符号要相反
4、引导学生观察图1.3.11,回答以下问题:
(1)找出图中的极点,并说明哪些点为极大值点,哪些点为极小值点?
(2)极大值一定大于极小值吗?
5、随堂练习:
1 如图是函数y=f(x)的函数,试找出函数y=f(x)的极值点,并指出哪些是极大值点,哪些是极小值点.如果把函数图象改为导函数y=的图象?
三、讲解例题
求函数的极值
教师分析:①求f/(x),解出f/(x)=0,找函数极点; ②由函数单调性确定在极点x0附近f/(x)的符号,从而确定哪一点是极大值点,哪一点为极小值点,从而求出函数的极值.
学生动手做,教师引导
解:∵∴=x2-4=(x-2)(x+2)
令=0,解得x=2,或x=-2.
下面分两种情况讨论:
当>0,即x>2,或x<-2时;
当<0,即-2<x<2时.
当x变化时, ,f(x)的变化情况如下表:
x (-∞,-2) -2 (-2,2) 2 (2,+∞) + 0 _ 0 + f(x) 单调递增 单调递减 单调递增 因此,当x=-2时,f(x)有极大值,且极大值为f(-2)= ;当x=2时,f(x)有极
小值,且极小值为f(2)=
函数的图象如:
归纳:求函数y=f(x)极值的方法是:
1求,解方程=0,当=0时:
如果在x0附近的左边>0,右边<0,那么f(x0)是极大值.
如果在x0附近的左边<0,右边>0,那么f(x0)是极小值
四、课堂练习
1、求函数f(x)=3x-x3的极值
2、思考:已知函数f(x)=ax3+bx2-2x在x=-2,x=1处取得极值,
求函数f(x)的解析式及单调区间。
五、课后思考题:
若函数f(x)=x3-3bx+3b在(0,1)内有极小值,求实数b的范围。
已知f(x)=x3+ax2+(a+b)x+1有极大值和极小值,求实数a的范围。
六、课堂小结:
函数极值的定义
函数极值求解步骤
一个点为函数的极值点的充要条件。
七、作业 P32 5 ① ④
教学反思:
本节的教学内容是导数的极值,有了上节课导数的单调性作铺垫,借助函数图形的直观性探索归纳出导数的极值定义,利用定义求函数的极值.教学反馈中主要是书写格式存在着问题.为了统一要求主张用列表的方式表示,刚开始学生都不愿接受这种格式,但随着几道例题与练习题的展示,学生体会到列表方式的简便,同时为能够快速判断导数的正负,我要求学
文档评论(0)