- 1、本文档共7页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
函数与应用关于
1已知某企业原有员工2000人,每人每年可为企业创利润3.5万元.为应对国际金融危机给企业带来的不利影响,该企业实施“优化重组,分流增效”的策略,分流出一部分员工待岗.为维护生产稳定,该企业决定待岗人数不超过原有员工的5%,并且每年给每位待岗员工发放生活补贴O.5万元.据评估,当待岗员工人数x不超过原有员工1%时,留岗员工每人每年可为企业多创利润(1-)万元;当待岗员工人数x超过原有员工1%时,留岗员工每人每年可为企业多创利润O.9595万元.为使企业年利润最大,应安排多少员工待岗?
解 设重组后,该企业年利润为y万元.
∵2000×1%=20,∴当0x≤20且x∈N时,
y=(2000-x)(3.5+1-)-0.5x=-5(x+)+9000.81.
∵x≤2000×5% ∴x≤100,∴当20x≤100且x∈N时,
y=(2000-x)(3.5+0.9595)-0.5x=-4.9595x+8919.
∴
当0x≤20时,有
y=-5(x+)+9000.81≤-5×2+9000.81=8820.81,
当且仅当x=,即x=18时取等号,此时y取得最大值.
当20x≤100时,函数y=-4.9595x+8919为减函数,
所以y-4.9595×20+8919=8819.81.
综上所述x=18时,y有最大值8820.81万元.
即要使企业年利润最大,应安排18名员工待岗.
2设,其中实常数.
(Ⅰ)求函数的定义域和值域;
(Ⅱ)试研究函数的基本性质,并证明你的结论.
解:(Ⅰ)函数的定义域为
,
当时,因为,所以,
,从而,
所以函数的值域为.
(Ⅱ)假设函数是奇函数,则,对于任意的,有成立,
即
当时,函数是奇函数.当,且时,函数是非奇非偶函数.
对于任意的,且,
当时,函数是递减函数.
3已知指数函数满足:g(2)=4,
定义域为的函数是奇函数。
(1)确定的解析式;
(2)求m,n的值;
(3)若对任意的,不等式恒成立,求实数的取值范围。
解:(1)
(2)由(1)知:
因为是奇函数,所以=0,即
∴, 又由f(1)= -f(-1)知
(3)由(2)知,
易知在上为减函数。
又因是奇函数,从而不等式:
等价于,
因为减函数,由上式推得:
即对一切有:,
从而判别式
4某公司以每吨10万元的价格销售某种化工产品,每年可售出该产品1000吨,若将该产品每吨的价格上涨x%,则每年的销售数量将减少mx%,其中m为正常数.
(1)当时,该产品每吨的价格上涨百分之几,可使销售的总金额最大?
(2)如果涨价能使销售总金额增加,求m的取值范围.
解(1)由题设,当价格上涨x%时,销售总金额为:
(2)(万元)
即。
当
当x=50时,万元.
即该吨产品每吨的价格上涨50%时,销售总最大.
(2)由(1)
如果上涨价格能使销假售总金额增加,
则有
即x0时,
∴注意到m0
∴ ∴ ∴
∴m的取值范围是(0,1)
5某机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用年后数控机床的盈利额为万元.
(1)写出与之间的函数关系式;
(2)从第几年开始,该机床开始盈利(盈利额为正值)(3)使用若干年后,对机床的处理方案有两种:(Ⅰ)当年平均盈利额达到最大值时,以30万元价格处理该机床;(Ⅱ)当盈利额达到最大值时,以12万元价格处理该机床.
请你研究一下哪种方案处理较为合理?请说明理由.
解 (1)依题得:N*)
(2)解不等式
N*,∴3≤x≤17,故从第3年开始盈利。
(3)(Ⅰ)
当且仅当时,即x=7时等号成立.
到2008年,年平均盈利额达到最大值,工厂共获利12×7+30=114万元.
(Ⅱ)故到2011年,盈利额达到最大值,工厂获利102+12=114万元
盈利额达到的最大值相同,而方案Ⅰ所用的时间较短,故方案Ⅰ比较合理.上规划出一块长方形地面建造公园,公园一边落在CD 上,但不得越过文物保护区的EF.问如何设计才能使公园占地面积最大,并求这最大面积( 其中AB=200 m,BC=160 m,AE=60 m,AF=40 m.)
解 设CG=x,矩形CGPH面积为y,
如图作EN⊥PH于点N,则
∴HC=160
当(m)即CG长为190m时,最大面积为(m2)
7某工厂统计资料显示,产品次品率p与日产量n (件)N*,且1≤n≤98)的关系表如下:
文档评论(0)