函数(function)关于.docVIP

  1. 1、本文档共17页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
函数(function)关于

函数(function)表示每个输入值对应唯一输出值的一种对应关系。函数f中对应输入值的输出值x的标准符号为f(x)。包含某个函数所有的输入值的集合被称作这个函数的定义域,包含所有的输出值的集合被称作值域。若先定义映射的概念,可以简单定义函数为,定义在非空数集之间的映射称为函数。 在某变化过程中设有两个变量x,y,按照某个对应法则,对于每一个给定的x值,都有唯一确定的y值与之对应,那么y就是x的函数。其中x叫自变量,y叫因变量。   另外,若对于每一个给定的x值,也都有唯一的y值与之对应,那么x也是y的函数。 现代定义 :   一般地,给定非空数集A,B,按照某个对应法则f,使得A中任一元素x,都有B中唯一确定的y与之对应,那么从集合A到集合B的这个对应,叫做从集合A到集合B的一个函数。 ?? 记作:x→y=f(x),xA.集合A叫做函数的定义域,记为D,集合{yy=f(x),x∈A}叫做值域,记为C。定义域,值域,对应法则称为函数的三要素。一般书写为y=f(x),xD.若省略定义域,则指使函数有意义的一切实数所组成的集合。 用映射的定义:   一般地,给定非空数集A,B,从集合A到集合B的一个映射,叫做从集合A到集合B的一个函数。   向量函数:自变量是向量的函数 叫向量函数 f(a1.a2,a3......an)=y   对应、映射、函数三者的重要关系:   函数是数集上的映射,映射是特指的对应。即:{函数}包含于{映射}包含于{对应} 编辑本段计算机定义   函数过程中的这些语句用于完成某些有意义的工作——通常是处理文本,控制输入或计算数值。通过在程序代码中引入函数名称和所需的参数,可在该程序中执行(或称调用)该函数。   类似过程,不过函数一般都有一个返回值。它们都可在自己结构里面调用自己,称为递归。   大多数编程语言构建函数的方法里都含有Function关键字(或称保留字)。   与数学上的函数类似,函数多用于一个等式,如y=f(x)(f是任意合理表达式)。 编辑本段简介   函数是数学中的一个基本概念,也是代数学里面最重要的概念之一。   首先要理解,函数是发生在非空数集之间的一种对应关系。然后,要理解发生在A、B之间的函数关系不止一个。最后,要重点理解函数的三要素。   函数的对应法则通常用解析式表示,但大量的函数关系是无法用解析式表示的,可以用图象,表格及其他形式表示。 编辑本段与函数有关的概念   在一个变化过程中,发生变化的量叫变量,有些数值是不随变量而改变的,我们称它们为常量。   自变量,函数一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。   因变量(函数),随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。   函数值,在y是x的函数中,x确定一个值,Y就随之确定一个值,当x取a时,Y就随之确定为b,b就叫做a的函数值。 映射定义   设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任何一个元素a,在集合B中都存在唯一的一个元素b与之对应,那么,这样的对应(包括集合A,B,以及集合A到集合B的对应关系f)叫做集合A到集合B的映射(Mapping),记作f:A→B。其中,b称为a在映射f下的象,记作:b=f(a); a称为b关于映射f的原象。集合A中所有元素的象的集合记作f(A)。   则有:定义在非空数集之间的映射称为函数。(函数的自变量是一种特殊的原象,因变量是特殊的象) 几何含义   函数与不等式和方程存在联系(初等函数)。令函数值等于零,从几何角度看,对应的自变量的值就是图象与X轴的交点的横坐标;从代数角度看,对应的自变量是方程的解。另外,把函数的表达式(无表达式的函数除外)中的“=”换成“”或“”,再把“Y”换成其它代数式,函数就变成了不等式,可以求自变量的范围。 函数的集合论   如果X到Y的二元关系f:X×Y,对于每个xX,都有唯一的yY,使得x,yf,则称f为X到Y的函数,记做:f:X→Y。   当X=X1×…×Xn时,称f为n元函数。   其特点:   前域和定义域重合   单值性:x,yf∧x,y’∈f →y=y’ 编辑本段定义域、对应域和值域   输入值的集合X被称为f的定义域;可能的输出值的集合Y被称为f的值域。函数的值域是指定义域中全部元素通过映射f得到的实际输出值的集合。注意,把对应域称作值域是不正确的,函数的值域是函数的对应域的子集。   计算机科学中,参数和返回值的数据类型分别确定了子程序的定义域和对应域。因此定义域和对应域是函数一开始就确定的强制进行约束。另一方面,值域是和实际的实现有关。 编辑本段单射、满射与双射函数   单射函数,将

文档评论(0)

phltaotao + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档