几何直观与空间几何区别.docVIP

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
几何直观与空间几何区别

对几何直观的认识与教学思考 摘 要:《义务教育数学课程标准(2011年版)》明确提出在数学教学中要初步形成几何直观,强调了几何直观在学生建立数学概念、解决问题过程中的地位和作用。让学生懂得利用几何图形表征数学概念、性质和分析、解决数学问题是数学学习中最常用的,也是最有效的方法之一,并能把这种方法实践于学习中。 关键词:直观 几何直观 解决问一、对几何直观的认识 《义务教育数学课程标准(2011年版)》明确提出在数学教学中要初步形成几何直观,强调几何直观在学生建立数学概念、解决实际问题过程中的地位和作用。 《义务教育数学课程标准(2011年版)》指出:“几何直观主要是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。”具体说来,几何直观是学生通过几何学习,在掌握几何图形的结构特征、空间关系以及度量的基础上,学会建立和操作平面或空间内物体的心智表征,形成准确感知和洞察客观世界的能力;能从空间形式和关系的角度对现实问题进行抽象和推理论证的能力。正如弗莱登塔尔所说,“几何直观能告诉我们什么是可能重要、可能有意义和可接近的,并使我们在课题、概念与方法的荒漠之中免于陷入歧途之苦。”这也与康德的“缺乏概念的直观是空虚的,缺乏直观的概念是盲目的”观念是相同的。 徐利治先生提出,直观就是借助于经验、观察、测试或类比联想,所产生的对事物关系直接的感知与认识,而几何直观是借助于见到的或想到的几何图形的形象关系产生对数量关系的直接感知。换言之,通过直观能够建立起人对自身体验与外物体验的对应关系。比如,代数里的列方程解决行程问题,在思考的时候,经常画出一个示意图,一条线代表一段路程,什么时间走到哪儿,另外一个人从另一个方向什么时间走到哪儿。这个示意图就是一个直观的模型,它帮助我们思考。比如,要说明三角形内角和是180°,你会任意画一个三角形,联系平角是180°的直观印象,想办法怎么把这3个角适当地搬搬家变成一个平角,这一思维的过程中也利用了直观。 需要强调的是,几何直观是指利用图形来阐释数学对象的含义,不能简单地把所有的直观手段都看做几何直观。 二、几何直观的价值追求 1.借助几何图形,理解数学概念。 人们在认识和理解抽象数学概念的过程中往往要使用视觉形象来表征数学问题,以便更加直观、清晰地了解知识的实质和关键,达到理解和接受抽象的数学内容和方法的目的。在数学教学中,由于学生受到知识经验和思维水平的影响和限制,经常会遇到一些很难用语言解释清楚的概念或性质,这时,图形直观往往会成为非常有效的表达工具。小学数学中的大多数概念、性质、法则等数学知识都可以利用几何图形来帮助理解。例如,五年级下册的《分数的意义》教材呈现了四幅图要求用分数表示涂色部分,引导学生直观地理解分数的意义。 2.借助几何图形,分析数学问题。 几何直观是创造性思维能力的体现,在科学发现的过程中起到不可磨灭的作用。很多数学问题的解决,其灵感往往来源于几何直观,人们总是力求把要研究的问题尽量变成可用几何直观呈现的问题,借助具体可感的几何形象来加强学生对信息及其关系的理解,帮助他们从整体上把握问题,提示问题的转化方法,从而获得真正的解题思路。正如波利亚所说,图形不仅是几何题目的对象,而且对于几何一开始没什么关系的题目,图形也是一种重要的帮手。从某种意义上说,几何直观对启迪学生解题策略的作用时显而易见的。解题过程中,个体借助示意图或线段图来表征数学问题情景的成分和结构,达到对数学问题结构的理解,并进而为解题者提供一些未经解释或只要通过形式转换就可以被察觉和使用的信息,以约束认知活动的范围,促进问题的解决。例如,下图是纯文字叙述的问题的几何直观表征,学生借助图形很容易发现解决问题的思路,充分体会到画示意图分析数学问题对探寻解题思路的重要作用。 3.借助几何图形,探索数学规律。 抽象观念、形式化语言的直观背景和几何形象,为学生创造了一个主动思考的机会。学生能够从洞察和想象的内部源泉入手,通过自主探索、发现和再创造,经历数学发现的过程。例如,苏教版教材安排一道思考题引导学生发现多边形的内角和。 在探索这一数学规律时,我们可以先出示正方形和长方形,让学生计算长方形和正方形的内角和,学生很容易发现它们的内角和是360°。继而,可以提问:那么一般的四边形的内角和是多少度呢?有规律吗?学生猜测可能也是360°,并说可以画一个任意四边形,想办法算一算。结果有的学生量了四个内角相加后发现是360°,有的把这个任意四边形的对角线相连,刚好把它分成了两个三角形,所以四边形的内角和是360°。 从这一案例的教学中可以看出,长方形和正方形图为学生计算四边形内角

文档评论(0)

phltaotao + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档