- 1、本文档共6页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
傅里叶级数工科
最近我在重新学习偏微分方程的时候又遇到“傅里叶级数”了,我曾经觉得这个公式非常繁琐,用到的时候就去翻书查看,没法自己信心满满的写出来。现在我找到诀窍了,可以不需要任何参考书,给我一个周期函数,我可以马上写出它的傅里叶级数。诀窍就在于从“几何”的角度来看待傅里叶级数。当我们把一个周期函数表达成傅里叶级数时,其实我们只是在做一个动作,那就是把函数“投影”到一系列由三角函数构成的“坐标轴”上。
?
1.?什么是投影
??? 我们先来复习什么是投影吧。考虑一个简单的二维平面的例子。如下图所示,给定两个向量 u 和 v ,我们从 u 的末端出发作到 v 所在直线的垂线,得到一个跟 v 同向的新向量 p 。这个过程就称作 u 到 v 所在直线的投影,得到的新向量 p 就是 u 沿 v 方向的分量。图中的系数 c 是 p 跟 v 的比例,也就是 u 在 v 轴上的“坐标”。我们可以用尺规作图来完成投影这个动作,问题是:如果给定的向量 u 和 v 都是代数形式的,我们怎么用代数的方法求 c ?
??? ?
?
??? 我相信只要有基本线性代数知识的同学都可以轻松解决这个问题。我们知道 u-cv?这个向量是“正交”于 v 的,用数学语言表达就是?(u-cv)T?v?=?0。我们马上就可以得到 c 的表达式如下。
?
(1)
?
?
2.?向量在一组正交基上的展开
??? 在讲傅里叶级数之前,我们还需引进线性代数中“正交基”的概念。如果这个概念你觉得陌生,就把它想成是互相垂直的“坐标轴”。回到刚才这个例子,如下图所示,现在我们引进一组正交基 {v1,v2},那么 u 可以展开成以下形式
?(2)
?
??? 从图上来看,(2)?式其实说的是我们可以把 u“投影”到 v1 和 v2 这两个坐标轴上,c1 和 c2 就是 u 的新“坐标”。问题是:我们怎么求 c1 和 c2 呢?你会说,我们可以?(2)?式两边同时乘以 v1 或 v2,然后利用它们正交的性质来求 c1,c2。没错,数学上是这么做的。但是利用之前关于投影的讨论,我们可以直接得出答案,直接利用?(1)?式就可以得到如下的表达式:
?(3)
?
3.?傅里叶级数的几何意义
??? 现在我们已经明白一件事情了:如果想把一个向量在一组正交基上展开,也就是找到这个向量沿每条新“坐标轴”的“坐标”,那么我们只要把它分别投影到每条坐标轴上就好了,也就是把?(1)?式中的 v 换成新坐标轴就好了。说了半天,这些东西跟傅里叶级数有什么关系?我们先回忆一下傅里叶级数的表达式。给定一个周期是 2l 的周期函数 f(x),它的傅里叶级数为:
?(4)
其中系数表达式如下:
?(5)
?
??? 我不喜欢记忆这些公式,有办法可以更好的理解他们来帮助记忆吗?答案是有的,那就是从几何的角度来看。傅里叶告诉我们,f(x)?可以用下面这组由无限多个三角函数(包括常数)组成的“正交基”来展开,
?(6)
?
??? 这里我们需要在广义上来理解“正交”。我们说两个向量,或两个函数之间是正交的,意思是它们的“内积”(inner?product)为零。?“内积”在有限维的“向量空间”中的形式为“点积”(dot?product)。在无限维的“函数空间”中,对于定义在区间?[a,b]?上的两个实函数 u(x),v(x)?来说,它们的内积定义为
?(7)
?
????正交基?(6)?中的每个函数都可以看做是一条独立的坐标轴,从几何角度来看,傅里叶级数展开其实只是在做一个动作,那就是把函数“投影”到一系列由三角函数构成的“坐标轴”上。上面?(5)?式中的系数则是函数在每条坐标轴上的坐标。
??? 现在的问题是我们不能直接用?(1)?式来求这些坐标了,因为它只适用于有限维的向量空间。在无限维的函数空间,我们需要把?(1)?式中分子分母的点积分别替换成?(7)?式。那么?(5)?式中的所有系数马上可以轻松的写出:
?(8)
?
?? 值得注意的是,(8)?式中所有积分可以在任意一个长度是2l的区间内进行。也就是说,不管是 [-l,l]?还是?[0,2l],答案都是一样的。
?? 有同学会说,老师上课教的是对?(4)?式两边乘以1,cos(nπx/l),或 sin(nπx/l),?然后积分,利用这些函数之间的正交性来得到?(5)?式。这些当然是对的,而且我们应该学会这种推导来加深对正交性的理解。但是在应用上,我更喜欢用几何的角度来看傅里叶级数,把函数看成是无限维的向量,把傅里叶级数跟几何中极其简单的“投影”的概念联系起来,这样学习新知识就变得简单了,而且可以毫无障碍的把公式记住,甚至一辈子都难忘。
?? 熟悉傅里叶级数的同学会问,那么对于复数形式的傅里叶级数,我们是否也能用几何投影的观点来看,然后写出级数中的所有系数呢?答案是肯定的。给定一
文档评论(0)