专题研究:等差数列及前n项和归纳总结及典型例题.doc

专题研究:等差数列及前n项和归纳总结及典型例题.doc

  1. 1、本文档共13页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
专题研究:等差数列及前n项和归纳总结及典型例题

等差数列及其前n项和 【高考】 1.考查运用基本量法求解等差数列的基本量问题. 2.考查等差数列的性质、前n项和公式及综合应用. 【】 【】 1.. 2.. .运用基本量法求解等差数列的基本量问题. .等差数列的性质、前n项和公式及综合应用.【】 1.等差数列的定义 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示. (d为公差)(,) 2.等差数列的通项公式 若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d. 变形推广: 3、等差中项 (1)如果,,成等差数列,那么叫做与的等差中项.即:或 (2)等差中项:数列是等差数列 4、等差数列的前n项和公式: (其中A、B是常数,所以当d≠0时,Sn是关于n的二次式且常数项为0) 特别地,当项数为奇数时,是项数为2n+1的等差数列的中间项 (项数为奇数的等差数列的各项和等于项数乘以中间项) 5、等差数列的判定方法(证明方法) (1) 定义法:若或(常数) 是等差数列. (2)等差中项:数列是等差数列 (3)数列是等差数列(其中是常数)。 (4)数列是等差数列,(其中A、B是常数)。 注 后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列. 和公式中,涉及到5个元素:、、、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: ①一般可设通项 ②奇数个数成等差,可设为…,…(公差为); ③偶数个数成等差,可设为…,,…(注意;公差为2) 7、等差数列的性质: (1)当公差时,等差数列的通项公式是关于的 一次函数,且斜率为公差;前和是关于的二次函数且常数项为0。 (2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。 (3)当时,则有,特别地,当时,则有。(注:,)当然扩充到3项、4项……都是可以的,但要保证等号两边项数相同,下标系数之和相等。 (4)、为等差数列,则都为等差数列 (5) 若{}是等差数列,则 ,…也成等差数列 (6) {an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,mN*)是公差为md的等差数列. 的前和分别为、,则 等差数列的前n项和,前m项和,则前m+n项和,当然也有,则 (9)设数列是等差数列,d为公差,是奇数项的和,是偶数项项的和,是前n项的和 ①当项数为偶数时, ②当项数为奇数时,则 (其中是项数为2n+1的等差数列的中间项). 8、求的最值 法一:因等差数列前项和是关于的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性。 法二: (1)“首正”的递减等差数列中,前项和的最大值是所有非负项之和 即当 由可得达到最大值时的值. (2)“首负”的递增等差数列中,前项和的最小值是所有非正项之和。 即 当 由可得达到最小值时的值. 或求中正负分界项 法三:直接利用二次函数的对称性:由于等差数列前n项和的图像是过原点的二次函数,故n取离二次函数对称轴最近的整数时,取最大值(或最小值)。若S p = S q则其对称轴为 9、解决等差数列问题时,通常考虑两类方法: ①基本量法:即运用条件转化为关于和的方程; ②巧妙运用等差数列的性质,一般地运用性质可以化繁为简,减少运算量。 【】 :等差数列的概念 【例】.(2001天津理,2)设Sn是数列{an}的前n项和,且Sn=n2,则{an}是( ) A.等比数列,但不是等差数列 B.等差数列,但不是等比数列 C.等差数列,而且也是等比数列 D.既非等比数列又非等差数列 答案:B; 解法一:an= ∴an=2n-1(n∈N) 又an+1-an=2为常数,≠常数 ∴{an}是等差数列,但不是等比数列. 解法二:如果一个数列的和是一个没有常数项的关于n的二次函数,则这个数列一定是等差数列。 点评:本题主要考查等差数列、等比数列的概念和基本知识,以及灵活运用递推式an=Sn-Sn-1的推理能力.但不要忽略a1,解法一紧扣定义,解法二较为灵活。 :【例】(2011·福建)在等差数列{an}中,a1=1,a3=-3. (1)求数列{an}的通项公式; (2)若数列{an}的前k项和Sk=-35,求k的值. [审题视点] 第(1)问,求公差d; 第(2)问,由(1)求Sn,列方程可求k. 解 (1)设等差数列{an}的公差为d,则an=a1+(n-1)d. 由a1=1,a3=-3可得1+2d=-3. 解得d=-2.从而,an=1+(n-1)×(-2)=3-2n. (2)由(1)可知an=3-2n. 所以Sn==2n-n2. 进而由Sk=-35可得2k-k2=-35. 即k2-

文档评论(0)

zhuwenmeijiale + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:7065136142000003

1亿VIP精品文档

相关文档