2005级量子力学期末考试试卷B.doc

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
2005级量子力学期末考试试卷B

2005级量子力学期末考试试卷B 一、 填空(10分) 1.氢原子波函数中,电子的第n个能级是 度简并的。 2.电子自旋角动量的x分量在表象中的矩阵形式为 。 3.已知动量算符在坐标表象中的形式为,则坐标算符在动量表象中的形式为 。 4.量子力学中,把粒子的能量和波的频率、粒子的动量和波长联系起来的德布罗意关系为 , 。 二、 名词解释(20分) 1.态叠加原理 2.全同粒子 3.简单塞曼效应 4.光谱的精细结构 三、解答题(共70分) 1.质量为的粒子在势场V(x) 中作一维束缚运动,两个能量本证函数分别为 , A, B, b, c 均为实常数。试确定参数b, c 的取值,并求这两个态的能量之差。 2,厄米算符与满足,且。求: (1)在表象中与的矩阵表示。 (2)在表象中的本征值与本征矢。 3,氢原子处在基态,求: (1)r的平均值,(2)最可几半径,(3)动能平均值,(4)动量的几率分布函数。 4,一维无限深势阱中运动的粒子的状态是,其中阱宽为a,求:粒子的能量概率分布和能量平均值。 5,设算符,。又设为的本征矢,相应的本征值为。求证和也是的本征矢,并求出相应的本征值。 2005级量子力学期末考试试卷B答案 一.(每空2分共10分) 1, 2, 3, 4,, 二、 名词解释(20分) 1.态叠加原理 2.全同粒子 3.简单塞曼效应 4.光谱的精细结构 [solve] 1,当体系处于某些态:的叠加态时,体系部分的处于 态之上。 2,质量,电荷,自旋等固有性质完全相同的微观粒子为全同粒子。 3,氢原子或类氢原子在没有外磁场时的一条谱线在强外磁场中分裂为3条的现象。 4,对氢原子或类氢原子,在考虑旋轨相互后将使原来简并的能级分裂开来的现象。 三.解答题(共70分) 1.(10分)1.质量为的粒子在势场V(x) 中作一维束缚运动,两个能量本证函数分别为 , A, B, b, c 均为实常数。试确定参数b, c 的取值,并求这两个态的能量之差。 解: 与分别满足定态方程 (1) (2) 将代入方程(1),得 (3) 显然V(x)满足条件V(-x)=V(x),故在此势场中的一维束缚定态波函数有确定的宇称。而要有确定的宇称,其中参数b必须为零,即 (4) 将与(4)式代入波函数的正交公式: (5) 得,即 (6) 方程(1)与(2)可写为如下形式 (7) (8) ,得 (9) 2.厄米算符与满足,且。求: (1)在表象中与的矩阵表示。 (2)在表象中的本征值与本征矢。 [solve] (1)(5分)令的本征值为,本征态为,则 ,,, 类似的,的本征值。于是,在表象中 , 由易得a=0, d=0. 即。又由得。故 再由可得。于是,故最终得到 (2)(5分)由或,当时,即为,则可得 。所以 由归一化条件易得。所以最终可得 同理可得当时, 3,氢原子处在基态,求:(1)r的平均值,(2)最可几半径,(3)动能平均值,(4)动量的几率分布函数。 [solve] (1)(5分) (2)(5分)由径向几率分布: 可得 故 令 ,可解得 ,(舍), 故最可几半径为 (3)(5分) (4)(5分)由展开假设可得 所以 积分过程是不变的,所以设沿z轴方向。则 4.(20分)一维无限深势阱中运动的粒子的状态是,其中阱宽为a,求:粒子的能量概率分布和能量平均值。 [solve] 归一化 可得 又由一维无限深势阱中粒子能量本征函数 并结合展开假设可得 所以能量的概率分布为 其中0对应n取偶数,对应n取奇数。 能量平均值为 5.(10分)设算符,。又设为的本征矢,相应的本征值为。求证和也是的本征矢,并求出相应的本征值。 [solve] 即是的本征矢,对应得本征值为 即也是的本征矢,对应的本征值为

文档评论(0)

shenlan118 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档