九年级数学同步培优竞赛详附解答 29第二十九讲 由正难则反切入.doc

九年级数学同步培优竞赛详附解答 29第二十九讲 由正难则反切入.doc

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
九年级数学同步培优竞赛详附解答 29第二十九讲 由正难则反切入

明师讲义: 人们习惯的思维方式是正向思维,即从条件手,进行正面的推导和论证,使问题得到解决.但有些数学问题,若直接从正面求解,则思维较易受阻,而“正难则反,顺难则逆,直难则曲”是突破思维障碍的重要策略. 数学中存在着大量的正难则反的切入点.数学中的定义、公式、法则和等价关系都是双向的,具有可逆性;对数学方法而言,特殊与一般、具体与抽象、分析与综合、归纳与演绎,其思考方向也是可逆的;作为解题策略,当正向思考困难时可逆向思考,直接证明受阻时可间接证明,探索可能性失败时转向考察不可能性.由正难则反切入的具体途径有: 定义、公式、法则的逆用; 2.常量与变量的换位; 3.反客为主; 4.反证法等. 【例题求解】 【例1】 已知满足,那么的值为 . (河南省竞赛题) 思路点拨 视为整体,避免解高次方程求的值. 【例2】 已知实数、、满足,且求的值. (第四届《学习报》公开赛试题) 思路点拨 显然求、、的值或寻求、、的关系是困难的,令,则2002=,原等式就可变形为关于的一元二次方程,运用根与系数关系求解. 注:(1)人们总习惯于用凝固的眼光看待常量与变量,认为它们泾渭分明,更换不得,实际上将常量设为变量,或将变量暂时看作常量,都会给人以有益的启示. (2)人的思维活动既有“求同”和“定势”的方面,又有“求异”和“变通”的方面.求同与求异,定势与变通是人的思维个性的两极,充分利用知识和方法的双向性,是培养思维能力的重要途径. 正难则反在具体的解题中,还表现为下列各种形式: (1)不通分母通分子; (2)不求局部求整体; (3)不先开方先平方; (4)不用直接挖隐含; (5)不算相等算不等; (6)不求动态求静态等. 【例3】 设、、为非零实数,且,,,试问:、、满足什么条件时,三个二次方程中至少有一个方程有不等的实数根. 思路点拨 如从正面考虑,条件“三个方程中至少有一个方程有不等的实数根”所涉及的情况比较复杂,但从其反面考虑情况却十分简单,只有一种可能,即三个方程都没有实数根,然后从全体实数中排除三个方程都无实数根的、、的取值即可. 注:受思维定势的消极影响,人们在解决有几个变量的问题时,总抓住主元不放,使有些问题的解决较为复杂,此时若变换主元,反客为主,问题常常能获得简解. 【例4】 已知一平面内的任意四点,其中任何三点都不在一条直线上,试问:是否一定能从这样的四点中选出三点构成一个三角形,使得这个三角形至少有一内角不大于45°?请证明你的结论. (江苏省竞赛题) 思路点拨 结论是以疑问形式出现的,不妨先假定是肯定的,然后推理.若推出矛盾,则说明结论是否定的;若推不出矛盾,则可考虑去证明结论是肯定的. 【例5】 能够找到这样的四个正整数,使得它们中任两个数的积与2002的和都是完全平方数吗?若能够,请举出一例;若不能够,请说明理由. (北京市竞赛题) 思路点拨 先假设存在正整数,,,满足 (,=1,2,3,4,m为正整数).运用完全平方数性质、奇偶性分析、分类讨论综合推理,若推出矛盾,则原假设不成立. 注:反证法是从待证命题的结论的反面出发,进行推理,通过导出矛盾来判断待证命题成立的方法,其证明的基本步骤是:否定待证命题的结论、推理导出矛盾、肯定原命题的结论. 宜用反证法的三题特征是: (1)结论涉及无限; (2)结论涉及唯一性; (3)结论为否定形式; (4)结论涉及“至多,至少”; (5)结论以疑问形式出现等. 学力训练 1.由小到大排列各分数:,,,,,是 . 2.分解因式= . 3.解关于的方程:(≥)得= . 4.的结果是 . 5.若关于的三个方程,, ,中至少有一个方程有实根,则m的取值范围是 . 6.有甲、乙两堆小球,如果第一次从甲堆拿出和乙堆同样多的小球放到乙堆,第二次从乙堆拿出和甲堆剩下的同样多的小球放到甲堆,如此挪动4次后,甲、乙两堆小球恰好都是16个,那么,甲、乙两堆最初各有多少个小球?

您可能关注的文档

文档评论(0)

xcs88858 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8130065136000003

1亿VIP精品文档

相关文档