新人教版七上整式加减全章教案.doc

  1. 1、本文档共31页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
新人教版七上整式加减全章教案

2.1 整式(1) 教学目标和要求: 1.理解单项式及单项式系数、次数的概念。 2.会准确迅速地确定一个单项式的系数和次数。 3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。 4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。 教学重点和难点: 重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。 难点:单项式概念的建立。 教学方法: 分层次教学,讲授、练习相结合。 教学过程: 一、复习引入: 列代数式 (1)若正方形的边长为a,则正方形的面积是 ; (2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为 ; (3)若x表示正方体棱长,则正方体的体积是 ; (4)若m表示一个有理数,则它的相反数是 ; (5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款 元。 请学生说出所列代数式的意义。 请学生观察所列代数式包含哪些运算,有何共同运算特征。 二、讲授新课: 1.单项式: 由数与字母的乘积组成的代数式称为单项式。补充,单独一个数或一个字母也是单项式,如a,5。 2.练习:判断下列各代数式哪些是单项式? (1); (2)abc; (3)b2; (4)-5ab2; (5)y; (6)-xy2; (7)-5。 3.单项式系数和次数: 直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。以四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。 4.例题: 例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。 = 1 \* GB3 ①x+1; = 2 \* GB3 ②; = 3 \* GB3 ③πr2; = 4 \* GB3 ④-a2b。 答: = 1 \* GB3 ①不是,因为原代数式中出现了加法运算; = 2 \* GB3 ②不是,因为原代数式是1与x的商; = 3 \* GB3 ③是,它的系数是π,次数是2; = 4 \* GB3 ④是,它的系数是-,次数是3。 通过其中的反例练习及例题,强调应注意以下几点: = 1 \* GB3 ①圆周率π是常数; = 2 \* GB3 ②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等; = 3 \* GB3 ③单项式次数只与字母指数有关。 6.课堂练习:课本p56:1,2。 三、课堂小结: ①单项式及单项式的系数、次数。 ②根据教学过程反馈的信息对出现的问题有针对性地进行小结。 ③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。 四、课堂作业: 课本p59:1,2。 板书设计: 单项式 单项式的定义 例1 单项式的系数、次数 例2 教学反思: 2.1 整式(2) 教学目标和要求: 1.通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念。 2.通过小组讨论、合作交流,让学生经历新知的形成过程,培养比较、分析、归纳的能力。由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生知识的迁移和知识结构体系的更新。 3.初步体会类比和逆向思维的数学思想。 教学重点和难点: 重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。 难点:多项式的次数。 教学方法: 分层次教学,讲授、练习相结合。 教学过程: 一、复习引入: 1.列代数式: (1)长方形的长与宽分别为a、b,则长方形的周长是 ; (2)某班有男生x人,女生21人,则这个班共有学生 人; (3)鸡兔同笼,鸡a只,兔b只,则共有头 个,脚 只。 2.观察以上所得出的四个代数式与上节课所学单项式有何区别。 (1)2(a+b) ; (2)21+x ; (3)a+b ; (4)2a+4b 。 二、讲授新课: 1.多项式: 板书由学生自己归纳得出的多项式概念。上面这些代数式都是由几个单项式相加而成的。像这样,几个单项式的和叫做多项式(polynomial)。在多项式中,每个单项式叫做多项式的项(term)。其中,不含字母的项,叫做常数项(constant term)。例如,多项式有三项,它们是,-2x,5。其中5是常数项。 一个多项式含

文档评论(0)

yan698698 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档