- 1、本文档共11页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
囚徒的困境 博弈论.ppt
博弈论 制作人:刘高峰 学号:201113320128 博弈分析 1:代表人物 2:代表著作 3:研究方向 4:博弈内容 代表人物 1:托马斯‘谢林 2:罗伯特‘奥曼 3:约翰’纳什 代表著作 1:《孙子兵法》、《三国演义》 2:《多人博弈的均衡》.《非合作博弈》. 3:《讨价还价问题》.《两人合作博弈》 研究方向 1:博弈论研究人们在彼此冲突的相互作用中如何做决策。 2:与囚徒困境相互联系。 3:军事·经济·对弈 博弈发生在各种情况 博弈内容 博弈参与者(Player) 博弈策略(Strategy) 博弈的收益(Payoff) 博弈的均衡(Equilibrium) 博弈参与者(Player) 博弈参与者指参与博弈的主体 在“锤头、剪刀、布”博弈中,博弈参与者是玩游戏的两个人 两名同学去相约去博物馆博弈中,博弈参与者是两名同学 在“囚徒困境”博弈中,博弈参与者是两名犯罪嫌疑人 博弈策略(Strategy) 博弈策略指博弈参与者可以采取的行动 在“锤头、剪刀、布”博弈中,博弈参与者所能采取的博弈策略均为“锤头”、“剪刀”或“布” 两名同学去相约去博物馆博弈中,博弈参与者所能采取的博弈策略均为“去学校南门集合”或“去学校北门集合” 在“囚徒困境”博弈中,博弈参与者所能采取的博弈策略均为“坦白”或“不坦白” 博弈收益 自己 博弈的均衡(Equilibrium) 博弈的均衡指所有参与者最优策略的组合 两名同学去相约去博物馆博弈中,博弈均衡有两个 两个同学都去学校南门 两个同学都去学校北门 在“囚徒困境”博弈中,博弈均衡有一个 嫌疑人甲和嫌疑人乙都坦白 谢谢! * *
文档评论(0)