- 1、本文档共15页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
spm8-fMRI数据处理
目录SPM简介和安装1一、数据准备(先设置数据输入和输出目录,再转换数据格式)2二、数据预处理流程20、预处理的workflow21、Slice Timing时间层校正32、Realignment 头动校正33、Coregister 配准54、Segment 分割65、Normalize 空间标准化66、Smooth 平滑8三、GLM模型和Specify 1st-level9四、实例:任务态数据预处理和一阶分析的批处理13SPM简介和安装SPM,即统计参数图,也是这个软件的最终输出,它是由英国伦敦大学的Friston教授等人在通用数学软件包Matlab基础上开发的软件系统,其统计功能非常强大,设计这个软件包的初衷是采用统计的方法来处理fMRI,PET和SPECT的数据。用SPM进行数据处理分析过程主要分为两大部分:预处理过程和统计分析过程。需要注意的是,静息态、任务态和DTI数据的预处理大致框架一致,但具体步骤不同,本教程主要讲任务态数据处理。数据预处理主要包括三个大框架:(1)Convert dicom files to hdr files and img images;(2) Temporal processing,即Slice Timing;(3)Spatial processing,包括 Realign、Normalize和Smooth。具体步骤下面有讲。统计分析过程包括:个体分析和组分析。使用Specify 1st level 做单个被试(single subject)分析;使用 Specify 2nd level做组分析(group analysis)。先写一下SPM8的安装:有必要说一下SPM实际不是一个独立的软件,它相当于一个用Matlab程序编写的工具箱,必须依赖Matlab的环境完成其功能。言归正传,首先将下载好的SPM8程序包导入Matlab,复制整个spm8文件夹到MATLAB的安装路径:MATLAB\R2009a\toolbox\下。然后运行Matlab,在其主窗口选择File-set path-Add with Subfolders-spm8-save-close。设置完成后在Matlab中执行命令spm fmri。这样出现了spm8的操作界面(如下图),这也表示spm8安装成功!我们称左上侧的窗口为按钮窗口(button window),左下侧的窗口为输入窗口(input window),右侧大窗口为树形结构窗口或图形窗口(Tree Building Window or the graphics window)。一、数据准备(先设置数据输入和输出目录,再转换数据格式)为方便后续的数据处理,如果数据分散处理后整合,建议所有处理数据路径保持一致,要统一路径。如原始DICOM图像放在raw data文件夹中,data文件夹存放转换后的功能像,data3D文件夹中存放转换后的结构像。处理前首先要采用数据转换软件将dicom数据转换成SPM解析格式,转换时格式请选择NIfTI,可用SPM输入面板中的DiCOM Import模块转换,也可以采用专门的转换软件,如MRIcovert。然后进行数据预处理,预处理结束后到matlab安装目录中备份spm*.ps文件,其中包含了空间校正和标准化的信息,然后进行建模分析。格式转换后data文件夹(功能像)中会有多对(和TR的个数一样).img(图像数据)和.hdr(矩阵数据);data3D文件夹中只有一个.img和.hdr文件。二、数据预处理流程0、预处理的workflowDICOM to NIFTI(详见核磁数据格式转换)Delete ImagesSlice TimingRealignNormalize:①Normalize by using EPI templates,即使用公共的EPI模版来进行空间标准化,这样的话就用不到T1结构像,也就不需要对T1像进行Coregister和Segment;②Normalize by using T1 image unified segmentation,即用T1像来进行空间标准化,这样的话需要用到T1结构像,所以需要在normalize前先对T1像进行Coregister和Segment,换句话说就是用coregistered and segmented T1像来进行空间标准化。另外,如果以后希望把功能激活图像叠加到结构像上,那么结构像也需要做一次空间标准化。Parameters files和功能像的normalize一样,也选择在segment中生成的空间标准化参数文件(批处理中选择Subj→MNI)。Images to write选择在segment中场强校正后的结构像。这里的voxel size要设置结构像的大小,也就是
文档评论(0)