第六讲极大似然估计.docVIP

  1. 1、本文档共60页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
第六讲 极大似然估计 The Likelihood Function and Identification of the Parameters (极大似然函数及参数识别) 1、似然函数的表示 在具有n个观察值的随机样本中,每个观察值的密度函数为。由于n个随机观察值是独立的,其联合密度函数为 函数被称为似然函数,通常记为,或者。 The probability density function, or pdf for a random variable y, conditioned on a set of parameters, , is denoted . This function identifies the data generating process that underlies an observed sample of data and, at the same time, provides a mathematical description of the data that the process will produce. The joint density of n independent and identically distributed (iid) observations from this process is the product of the individual densities; (17-1) This joint density is the likelihood function, defined as a function of the unknown parameter vector, , where is used to indicate the collection of sample data. Note that we write the joint density as a function of the data conditioned on the parameters whereas when we form the likelihood function, we write this function in reverse, as a function of the parameters, conditioned on the data. Though the two functions are the same, it is to be emphasized that the likelihood function is written in this fashion to highlight our interest in the parameters and the information about them that is contained in the observed data. However, it is understood that the likelihood function is not meant to represent a probability density for the parameters as it is in Section 16.2.2. In this classical estimation framework, the parameters are assumed to be fixed constants which we hope to learn about from the data. It is usually simpler to work with the log of the likelihood function: . (17-2) Again, to emphasize our interest in the parameters, given the observed data, we denote this function . The likelihood function and its logarithm, evaluated at , are sometimes denoted simply and , respectively or, where no ambiguity can arise, just or . It will usually be necessary to generalize the concept of the likelihood function to allow the density to de

文档评论(0)

jkf4rty7 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档