双勾函数的性质及应用_.ppt

  1. 1、本文档共21页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
双勾函数的性质及应用_

2.回答下列问题: ⑴.函数的定义域 ⑵.奇函数 偶函数 ⑶.奇函数,偶函数的图像分别有什么特征 ⑷.增函数 减函数 ⑸.用定义法证明函数在定义域区间D上是单调函数时,过程为: ① x1、x2是任意的 ② x1、x2在同一区间上 ③ x1x2 (有序) 1. 定义域 2.奇偶性 四.小结: * * * * * * * 1.给出一个确定的函数 常从几个方面研究它: 定义域. 值域. 奇偶性. 单调性. 函数图象 函数y=f(x)中自变量x的允许值范围 如果对于函数y=f(x)的定义域内 任意的一个x都有f(-x)=-f(x), 则函数叫奇函数. 如果对于函数y=f(x)的定义域内 任意的一个x都有f(-x)=f(x), 则函数叫偶函数. 关于原点对称,关于y轴对称. 在区间D上,任取自变量x1、x2,令x1x2作f(x2)-f(x1), 变形,讨论符号,结论. 如果对于定义域内某个区间D上,任意两个自变量x1、x2,当x1x2都有f(x1)f(x2),就称函数f(x) 在区间D上是增函数. 如果对于定义域内某个区间D上,任意两个自变量x1、x2,当x1x2都有f(x1)f(x2),就称函数f(x) 在区间D上是减函数. 函数y=f(x),x∈D 由全体函数值 组成的集合. 其中x1、x2有什么特征: ⑹.函数的值域 利用所掌握的函数知识,探究函数 (a0)的性质. (-∞,0) ∪(0 ,+∞) 奇函数 f(-x)=-f(x) 3.确定函数 (a0)的单调区间 ⑴. 当x∈ (0 ,+∞)时,确定某单调区间 ⑵. 当x∈ (-∞,0)时,确定某单调区间 综上,函数 (a0)的单调 区间是 单调区间的分界点为: a的平方根 4.函数 (a0)的大致图像 x y 0 5.函数 (a0)的值域 1.已知函数 2.已知函数 ,求f(x)的最小值,并 求此时的x值. 4.建筑一个容积为800米3,深8米的长方体水池(无盖).池壁,池底造价分别为a元/米2和2a元/ 米2.底面一边长为x米,总造价为y. 写出y与x的函数式,问底面边长x为何值时总造价y最低,是多少? 5.甲乙两地相距100公里,汽车从甲地到乙地匀速行驶,速度为x公里/小时,不得超过C(C为常数).已知汽车每小时运输成本为可变成本x2与固定成本3600之和.为使全程运输成本y最小,问汽车以多大速度行驶?

文档评论(0)

lifupingb + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档